
If \[I = \int\limits_0^{\dfrac{\pi }{4}} {{{\sin }^2}xdx} \] and \[J = \int\limits_0^{\dfrac{\pi }{4}} {{{\cos }^2}xdx} \], then what is the value of \[I\]?
A. \[\dfrac{\pi }{4} - J\]
B. \[2J\]
C. \[J\]
D. \[\dfrac{J}{2}\]
Answer
161.4k+ views
Hint: Here, 2 definite integrals are given. First, add both given integrals and simplify them by applying the trigonometric identity \[{\sin ^2}x + {\cos ^2}x = 1\]. Then, solve the integral by using the integration formula \[\int\limits_a^b {ndx = \left[ {nx} \right]} _a^b\]. After that, apply the limits. In the end, simplify the equation to get the required answer.
Formula Used:\[{\sin ^2}x + {\cos ^2}x = 1\]
\[\int\limits_a^b {ndx = \left[ {nx} \right]} _a^b\]
Integration rule: \[\int\limits_a^b {\left[ {f\left( x \right) + g\left( x \right)} \right]} dx = \int\limits_a^b {f\left( x \right)} dx + \int\limits_a^b {g\left( x \right)} dx\]
Complete step by step solution:The given definite integrals are \[I = \int\limits_0^{\dfrac{\pi }{4}} {{{\sin }^2}xdx} \] and \[J = \int\limits_0^{\dfrac{\pi }{4}} {{{\cos }^2}xdx} \].
Now add both integrals.
\[I + J = \int\limits_0^{\dfrac{\pi }{4}} {{{\sin }^2}xdx} + \int\limits_0^{\dfrac{\pi }{4}} {{{\cos }^2}xdx} \]
Apply the sum rule of the integration \[\int\limits_a^b {\left[ {f\left( x \right) + g\left( x \right)} \right]} dx = \int\limits_a^b {f\left( x \right)} dx + \int\limits_a^b {g\left( x \right)} dx\] on the right-hand side.
\[I + J = \int\limits_0^{\dfrac{\pi }{4}} {\left[ {{{\sin }^2}x + {{\cos }^2}x} \right]dx} \]
Apply the trigonometric identity \[{\sin ^2}x + {\cos ^2}x = 1\].
\[I + J = \int\limits_0^{\dfrac{\pi }{4}} {1dx} \]
Solve the integral by using the integration formula \[\int\limits_a^b {ndx = \left[ {nx} \right]} _a^b\].
\[I + J = \left[ x \right]_0^{\dfrac{\pi }{4}}\]
Apply the upper and lower limits.
\[I + J = \left[ {\dfrac{\pi }{4} - 0} \right]\]
\[ \Rightarrow I + J = \dfrac{\pi }{4}\]
\[ \Rightarrow I = \dfrac{\pi }{4} - J\]
Option ‘A’ is correct
Note: The other way to solve the required integral \[I = \int\limits_0^{\dfrac{\pi }{4}} {{{\sin }^2}xdx} \] is:
\[I = \int\limits_0^{\dfrac{\pi }{4}} {{{\sin }^2}xdx} \]
Simplify the term using the trigonometric identity \[{\sin ^2}x = \dfrac{{1 - \cos 2x}}{2}\].
\[I = \int\limits_0^{\dfrac{\pi }{4}} {\dfrac{{1 - \cos 2x}}{2}dx} \]
\[ \Rightarrow I = \dfrac{1}{2}\int\limits_0^{\dfrac{\pi }{4}} {\left( {1 - \cos 2x} \right)dx} \]
Apply the sum rule of integration \[\int\limits_a^b {\left[ {f\left( x \right) + g\left( x \right)} \right]} dx = \int\limits_a^b {f\left( x \right)} dx + \int\limits_a^b {g\left( x \right)} dx\].
\[ \Rightarrow I = \dfrac{1}{2}\left[ {\int\limits_0^{\dfrac{\pi }{4}} {1dx} - \int\limits_0^{\dfrac{\pi }{4}} {\cos 2xdx} } \right]\]
\[ \Rightarrow I = \dfrac{1}{2}\left[ {x - \dfrac{1}{2}\sin 2x} \right]_0^{\dfrac{\pi }{4}}\]
Apply the limits.
\[ \Rightarrow I = \dfrac{1}{2}\left[ {\left( {\dfrac{\pi }{4} - \dfrac{1}{2}\sin 2\dfrac{\pi }{4}} \right) - \left( {0 - \dfrac{1}{2}\sin 2\left( 0 \right)} \right)} \right]\]
\[ \Rightarrow I = \dfrac{1}{2}\left[ {\left( {\dfrac{\pi }{4} - \dfrac{1}{2}\sin \dfrac{\pi }{2}} \right) - \left( {0 - 0} \right)} \right]\]
\[ \Rightarrow I = \dfrac{1}{2}\left( {\dfrac{\pi }{4} - \dfrac{1}{2}\left( 1 \right)} \right)\]
\[ \Rightarrow I = \dfrac{\pi }{8} - \dfrac{1}{4}\]
\[ \Rightarrow I = \dfrac{{\pi - 2}}{8}\]
But this solution is not present in the given options.
Formula Used:\[{\sin ^2}x + {\cos ^2}x = 1\]
\[\int\limits_a^b {ndx = \left[ {nx} \right]} _a^b\]
Integration rule: \[\int\limits_a^b {\left[ {f\left( x \right) + g\left( x \right)} \right]} dx = \int\limits_a^b {f\left( x \right)} dx + \int\limits_a^b {g\left( x \right)} dx\]
Complete step by step solution:The given definite integrals are \[I = \int\limits_0^{\dfrac{\pi }{4}} {{{\sin }^2}xdx} \] and \[J = \int\limits_0^{\dfrac{\pi }{4}} {{{\cos }^2}xdx} \].
Now add both integrals.
\[I + J = \int\limits_0^{\dfrac{\pi }{4}} {{{\sin }^2}xdx} + \int\limits_0^{\dfrac{\pi }{4}} {{{\cos }^2}xdx} \]
Apply the sum rule of the integration \[\int\limits_a^b {\left[ {f\left( x \right) + g\left( x \right)} \right]} dx = \int\limits_a^b {f\left( x \right)} dx + \int\limits_a^b {g\left( x \right)} dx\] on the right-hand side.
\[I + J = \int\limits_0^{\dfrac{\pi }{4}} {\left[ {{{\sin }^2}x + {{\cos }^2}x} \right]dx} \]
Apply the trigonometric identity \[{\sin ^2}x + {\cos ^2}x = 1\].
\[I + J = \int\limits_0^{\dfrac{\pi }{4}} {1dx} \]
Solve the integral by using the integration formula \[\int\limits_a^b {ndx = \left[ {nx} \right]} _a^b\].
\[I + J = \left[ x \right]_0^{\dfrac{\pi }{4}}\]
Apply the upper and lower limits.
\[I + J = \left[ {\dfrac{\pi }{4} - 0} \right]\]
\[ \Rightarrow I + J = \dfrac{\pi }{4}\]
\[ \Rightarrow I = \dfrac{\pi }{4} - J\]
Option ‘A’ is correct
Note: The other way to solve the required integral \[I = \int\limits_0^{\dfrac{\pi }{4}} {{{\sin }^2}xdx} \] is:
\[I = \int\limits_0^{\dfrac{\pi }{4}} {{{\sin }^2}xdx} \]
Simplify the term using the trigonometric identity \[{\sin ^2}x = \dfrac{{1 - \cos 2x}}{2}\].
\[I = \int\limits_0^{\dfrac{\pi }{4}} {\dfrac{{1 - \cos 2x}}{2}dx} \]
\[ \Rightarrow I = \dfrac{1}{2}\int\limits_0^{\dfrac{\pi }{4}} {\left( {1 - \cos 2x} \right)dx} \]
Apply the sum rule of integration \[\int\limits_a^b {\left[ {f\left( x \right) + g\left( x \right)} \right]} dx = \int\limits_a^b {f\left( x \right)} dx + \int\limits_a^b {g\left( x \right)} dx\].
\[ \Rightarrow I = \dfrac{1}{2}\left[ {\int\limits_0^{\dfrac{\pi }{4}} {1dx} - \int\limits_0^{\dfrac{\pi }{4}} {\cos 2xdx} } \right]\]
\[ \Rightarrow I = \dfrac{1}{2}\left[ {x - \dfrac{1}{2}\sin 2x} \right]_0^{\dfrac{\pi }{4}}\]
Apply the limits.
\[ \Rightarrow I = \dfrac{1}{2}\left[ {\left( {\dfrac{\pi }{4} - \dfrac{1}{2}\sin 2\dfrac{\pi }{4}} \right) - \left( {0 - \dfrac{1}{2}\sin 2\left( 0 \right)} \right)} \right]\]
\[ \Rightarrow I = \dfrac{1}{2}\left[ {\left( {\dfrac{\pi }{4} - \dfrac{1}{2}\sin \dfrac{\pi }{2}} \right) - \left( {0 - 0} \right)} \right]\]
\[ \Rightarrow I = \dfrac{1}{2}\left( {\dfrac{\pi }{4} - \dfrac{1}{2}\left( 1 \right)} \right)\]
\[ \Rightarrow I = \dfrac{\pi }{8} - \dfrac{1}{4}\]
\[ \Rightarrow I = \dfrac{{\pi - 2}}{8}\]
But this solution is not present in the given options.
Recently Updated Pages
Geometry of Complex Numbers – Topics, Reception, Audience and Related Readings

JEE Main 2021 July 25 Shift 1 Question Paper with Answer Key

JEE Main 2021 July 22 Shift 2 Question Paper with Answer Key

JEE Atomic Structure and Chemical Bonding important Concepts and Tips

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

Chemical Properties of Hydrogen - Important Concepts for JEE Exam Preparation

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation

Displacement-Time Graph and Velocity-Time Graph for JEE

Degree of Dissociation and Its Formula With Solved Example for JEE

Free Radical Substitution Mechanism of Alkanes for JEE Main 2025

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

JEE Advanced 2025: Dates, Registration, Syllabus, Eligibility Criteria and More

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

JEE Advanced 2025 Notes

JEE Main 2025: Conversion of Galvanometer Into Ammeter And Voltmeter in Physics

Learn About Angle Of Deviation In Prism: JEE Main Physics 2025
