
If \[I = \int\limits_0^{\dfrac{\pi }{4}} {{{\sin }^2}xdx} \] and \[J = \int\limits_0^{\dfrac{\pi }{4}} {{{\cos }^2}xdx} \], then what is the value of \[I\]?
A. \[\dfrac{\pi }{4} - J\]
B. \[2J\]
C. \[J\]
D. \[\dfrac{J}{2}\]
Answer
164.1k+ views
Hint: Here, 2 definite integrals are given. First, add both given integrals and simplify them by applying the trigonometric identity \[{\sin ^2}x + {\cos ^2}x = 1\]. Then, solve the integral by using the integration formula \[\int\limits_a^b {ndx = \left[ {nx} \right]} _a^b\]. After that, apply the limits. In the end, simplify the equation to get the required answer.
Formula Used:\[{\sin ^2}x + {\cos ^2}x = 1\]
\[\int\limits_a^b {ndx = \left[ {nx} \right]} _a^b\]
Integration rule: \[\int\limits_a^b {\left[ {f\left( x \right) + g\left( x \right)} \right]} dx = \int\limits_a^b {f\left( x \right)} dx + \int\limits_a^b {g\left( x \right)} dx\]
Complete step by step solution:The given definite integrals are \[I = \int\limits_0^{\dfrac{\pi }{4}} {{{\sin }^2}xdx} \] and \[J = \int\limits_0^{\dfrac{\pi }{4}} {{{\cos }^2}xdx} \].
Now add both integrals.
\[I + J = \int\limits_0^{\dfrac{\pi }{4}} {{{\sin }^2}xdx} + \int\limits_0^{\dfrac{\pi }{4}} {{{\cos }^2}xdx} \]
Apply the sum rule of the integration \[\int\limits_a^b {\left[ {f\left( x \right) + g\left( x \right)} \right]} dx = \int\limits_a^b {f\left( x \right)} dx + \int\limits_a^b {g\left( x \right)} dx\] on the right-hand side.
\[I + J = \int\limits_0^{\dfrac{\pi }{4}} {\left[ {{{\sin }^2}x + {{\cos }^2}x} \right]dx} \]
Apply the trigonometric identity \[{\sin ^2}x + {\cos ^2}x = 1\].
\[I + J = \int\limits_0^{\dfrac{\pi }{4}} {1dx} \]
Solve the integral by using the integration formula \[\int\limits_a^b {ndx = \left[ {nx} \right]} _a^b\].
\[I + J = \left[ x \right]_0^{\dfrac{\pi }{4}}\]
Apply the upper and lower limits.
\[I + J = \left[ {\dfrac{\pi }{4} - 0} \right]\]
\[ \Rightarrow I + J = \dfrac{\pi }{4}\]
\[ \Rightarrow I = \dfrac{\pi }{4} - J\]
Option ‘A’ is correct
Note: The other way to solve the required integral \[I = \int\limits_0^{\dfrac{\pi }{4}} {{{\sin }^2}xdx} \] is:
\[I = \int\limits_0^{\dfrac{\pi }{4}} {{{\sin }^2}xdx} \]
Simplify the term using the trigonometric identity \[{\sin ^2}x = \dfrac{{1 - \cos 2x}}{2}\].
\[I = \int\limits_0^{\dfrac{\pi }{4}} {\dfrac{{1 - \cos 2x}}{2}dx} \]
\[ \Rightarrow I = \dfrac{1}{2}\int\limits_0^{\dfrac{\pi }{4}} {\left( {1 - \cos 2x} \right)dx} \]
Apply the sum rule of integration \[\int\limits_a^b {\left[ {f\left( x \right) + g\left( x \right)} \right]} dx = \int\limits_a^b {f\left( x \right)} dx + \int\limits_a^b {g\left( x \right)} dx\].
\[ \Rightarrow I = \dfrac{1}{2}\left[ {\int\limits_0^{\dfrac{\pi }{4}} {1dx} - \int\limits_0^{\dfrac{\pi }{4}} {\cos 2xdx} } \right]\]
\[ \Rightarrow I = \dfrac{1}{2}\left[ {x - \dfrac{1}{2}\sin 2x} \right]_0^{\dfrac{\pi }{4}}\]
Apply the limits.
\[ \Rightarrow I = \dfrac{1}{2}\left[ {\left( {\dfrac{\pi }{4} - \dfrac{1}{2}\sin 2\dfrac{\pi }{4}} \right) - \left( {0 - \dfrac{1}{2}\sin 2\left( 0 \right)} \right)} \right]\]
\[ \Rightarrow I = \dfrac{1}{2}\left[ {\left( {\dfrac{\pi }{4} - \dfrac{1}{2}\sin \dfrac{\pi }{2}} \right) - \left( {0 - 0} \right)} \right]\]
\[ \Rightarrow I = \dfrac{1}{2}\left( {\dfrac{\pi }{4} - \dfrac{1}{2}\left( 1 \right)} \right)\]
\[ \Rightarrow I = \dfrac{\pi }{8} - \dfrac{1}{4}\]
\[ \Rightarrow I = \dfrac{{\pi - 2}}{8}\]
But this solution is not present in the given options.
Formula Used:\[{\sin ^2}x + {\cos ^2}x = 1\]
\[\int\limits_a^b {ndx = \left[ {nx} \right]} _a^b\]
Integration rule: \[\int\limits_a^b {\left[ {f\left( x \right) + g\left( x \right)} \right]} dx = \int\limits_a^b {f\left( x \right)} dx + \int\limits_a^b {g\left( x \right)} dx\]
Complete step by step solution:The given definite integrals are \[I = \int\limits_0^{\dfrac{\pi }{4}} {{{\sin }^2}xdx} \] and \[J = \int\limits_0^{\dfrac{\pi }{4}} {{{\cos }^2}xdx} \].
Now add both integrals.
\[I + J = \int\limits_0^{\dfrac{\pi }{4}} {{{\sin }^2}xdx} + \int\limits_0^{\dfrac{\pi }{4}} {{{\cos }^2}xdx} \]
Apply the sum rule of the integration \[\int\limits_a^b {\left[ {f\left( x \right) + g\left( x \right)} \right]} dx = \int\limits_a^b {f\left( x \right)} dx + \int\limits_a^b {g\left( x \right)} dx\] on the right-hand side.
\[I + J = \int\limits_0^{\dfrac{\pi }{4}} {\left[ {{{\sin }^2}x + {{\cos }^2}x} \right]dx} \]
Apply the trigonometric identity \[{\sin ^2}x + {\cos ^2}x = 1\].
\[I + J = \int\limits_0^{\dfrac{\pi }{4}} {1dx} \]
Solve the integral by using the integration formula \[\int\limits_a^b {ndx = \left[ {nx} \right]} _a^b\].
\[I + J = \left[ x \right]_0^{\dfrac{\pi }{4}}\]
Apply the upper and lower limits.
\[I + J = \left[ {\dfrac{\pi }{4} - 0} \right]\]
\[ \Rightarrow I + J = \dfrac{\pi }{4}\]
\[ \Rightarrow I = \dfrac{\pi }{4} - J\]
Option ‘A’ is correct
Note: The other way to solve the required integral \[I = \int\limits_0^{\dfrac{\pi }{4}} {{{\sin }^2}xdx} \] is:
\[I = \int\limits_0^{\dfrac{\pi }{4}} {{{\sin }^2}xdx} \]
Simplify the term using the trigonometric identity \[{\sin ^2}x = \dfrac{{1 - \cos 2x}}{2}\].
\[I = \int\limits_0^{\dfrac{\pi }{4}} {\dfrac{{1 - \cos 2x}}{2}dx} \]
\[ \Rightarrow I = \dfrac{1}{2}\int\limits_0^{\dfrac{\pi }{4}} {\left( {1 - \cos 2x} \right)dx} \]
Apply the sum rule of integration \[\int\limits_a^b {\left[ {f\left( x \right) + g\left( x \right)} \right]} dx = \int\limits_a^b {f\left( x \right)} dx + \int\limits_a^b {g\left( x \right)} dx\].
\[ \Rightarrow I = \dfrac{1}{2}\left[ {\int\limits_0^{\dfrac{\pi }{4}} {1dx} - \int\limits_0^{\dfrac{\pi }{4}} {\cos 2xdx} } \right]\]
\[ \Rightarrow I = \dfrac{1}{2}\left[ {x - \dfrac{1}{2}\sin 2x} \right]_0^{\dfrac{\pi }{4}}\]
Apply the limits.
\[ \Rightarrow I = \dfrac{1}{2}\left[ {\left( {\dfrac{\pi }{4} - \dfrac{1}{2}\sin 2\dfrac{\pi }{4}} \right) - \left( {0 - \dfrac{1}{2}\sin 2\left( 0 \right)} \right)} \right]\]
\[ \Rightarrow I = \dfrac{1}{2}\left[ {\left( {\dfrac{\pi }{4} - \dfrac{1}{2}\sin \dfrac{\pi }{2}} \right) - \left( {0 - 0} \right)} \right]\]
\[ \Rightarrow I = \dfrac{1}{2}\left( {\dfrac{\pi }{4} - \dfrac{1}{2}\left( 1 \right)} \right)\]
\[ \Rightarrow I = \dfrac{\pi }{8} - \dfrac{1}{4}\]
\[ \Rightarrow I = \dfrac{{\pi - 2}}{8}\]
But this solution is not present in the given options.
Recently Updated Pages
Geometry of Complex Numbers – Topics, Reception, Audience and Related Readings

JEE Main 2021 July 25 Shift 1 Question Paper with Answer Key

JEE Main 2021 July 22 Shift 2 Question Paper with Answer Key

JEE Main 2025 Session 2: Exam Date, Admit Card, Syllabus, & More

JEE Atomic Structure and Chemical Bonding important Concepts and Tips

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

Trending doubts
Degree of Dissociation and Its Formula With Solved Example for JEE

Instantaneous Velocity - Formula based Examples for JEE

JEE Main Chemistry Question Paper with Answer Keys and Solutions

JEE Main Reservation Criteria 2025: SC, ST, EWS, and PwD Candidates

What is Normality in Chemistry?

Chemistry Electronic Configuration of D Block Elements: JEE Main 2025

Other Pages
Total MBBS Seats in India 2025: Government College Seat Matrix

NEET Total Marks 2025: Important Information and Key Updates

Neet Cut Off 2025 for MBBS in Tamilnadu: AIQ & State Quota Analysis

Karnataka NEET Cut off 2025 - Category Wise Cut Off Marks

NEET Marks vs Rank 2024|How to Calculate?

NEET 2025: All Major Changes in Application Process, Pattern and More
