
If \[f(x)={{\sin }^{-1}}\left( \dfrac{2x}{1+\mathop{x}^{2}} \right)\] , then
(a) \[f\] is derivable for all \[x\], with $\left| x \right|<1$
(b) $f$ is not derivable at $x=1$
(c) $f$ is not derivable at \[x=-1\]
(d) \[f\] is derivable for all \[x\], with \[\left| x \right|>1\]
Answer
126.9k+ views
Hint: Check the differentiability of f(x) at the end points of its domain and check which option is matching with your answer. Also use the half angle formula in terms of “tan” for substitution.
In a given problem we have to find whether the function is differentiable and if yes then at what values?
For that we will just rewrite given equation,
\[f(x)={{\sin }^{-1}}\left( \dfrac{2x}{1+\mathop{x}^{2}} \right)\]
Now, to simplify the problem substitute
$x=\tan \theta $ In the above problem. Therefore, $\theta ={{\tan }^{-1}}x$…………………………………. (1)
\[\therefore f(x)={{\sin }^{-1}}\left( \dfrac{2\tan \theta }{1+\mathop{\tan \theta }^{2}} \right)\]
To proceed further we should know the Half Angle formula for \[\sin 2\theta \] which is given below,
Formula:
\[\sin 2\theta =\dfrac{2\tan \theta }{1+\mathop{\tan \theta }^{2}}\]
Therefore \[f(x)\] will become,
\[\therefore f(x)={{\sin }^{-1}}\left( \sin 2\theta \right)\] ……………………….. (2)
If we have to simplify further then we should know it’s simplification in various domains, which are given below,
Formulae:
\[{{\sin }^{-1}}\left( \sin x \right)=-\pi -x\] For \[x<\dfrac{-\pi }{2}\]
For \[\dfrac{-\pi }{2}\le x\le \dfrac{\pi }{2}\]
\[{{\sin }^{-1}}\left( \sin x \right)=\pi -x\] For \[x>\dfrac{\pi }{2}\]
We can write equation (2) according to above formulae by replacing ‘x’ with \[2\theta \]
As, \[f(x)={{\sin }^{-1}}\left( \sin 2\theta \right)\]
\[f(x)=-\pi -2\theta \] For \[2\theta <\dfrac{-\pi }{2}\]……………………………. (2)
\[f(x)=2\theta \] For \[\dfrac{-\pi }{2}\le 2\theta \le \dfrac{\pi }{2}\]…………………….. (3)
\[f(x)=\pi -2\theta \] For \[2\theta >\dfrac{\pi }{2}\]……………………………… (4)
Before substituting the value of \[\theta \] we will first convert limits,
As, \[\dfrac{-\pi }{2}\le 2\theta \le \dfrac{\pi }{2}\]
Dividing by 2 we will get,
\[\dfrac{-\pi }{4}\le \theta \le \dfrac{\pi }{4}\]
Take tangent of all angles,
\[\tan \dfrac{-\pi }{4}\le \tan \theta \le \tan \dfrac{\pi }{4}\]
\[\therefore -\tan \dfrac{\pi }{4}\le \tan \theta \le \tan \dfrac{\pi }{4}\]
\[\therefore -1\le \tan \theta \le 1\]
From (1) we can write above equation as,
\[\therefore -1\le x\le 1\]………………………………… (5)
Now, we can easily write equations (2), (3), (4) by substituting $x=\tan \theta $ from (1) and replacing limits with the help of (5),
\[f(x)=-\pi -2\tan x\] For \[x<-1\]
\[f(x)=2\tan x\] For \[-1\le x\le 1\]
\[f(x)=\pi -2\tan x\] For \[x>1\]
Now we will check the differentiability at -1, for that we are going to use the formula given below for several times.
Formula:
\[\dfrac{d}{dx}\tan x=\dfrac{1}{1+\mathop{x}^{2}}\]
\[L.H.D.={{\left[ \dfrac{d}{dx}(-\pi -2\tan x) \right]}_{x=-1}}={{\left[ \dfrac{-2}{1+\mathop{x}^{2}} \right]}_{x=-1}}=\dfrac{-2}{2}=-1\]\[\dfrac{d}{dx}\tan x=\dfrac{1}{1+\mathop{x}^{2}}\]
\[R.H.D.={{\left[ \dfrac{d}{dx}(2\tan x) \right]}_{x=-1}}={{\left[ \dfrac{2}{1+\mathop{x}^{2}} \right]}_{x=-1}}=\dfrac{2}{2}=1\]
\[\therefore L.H.D.\ne R.H.D.\]
Therefore f(x) is not differentiable at -1…………………………………………. (6)
\[L.H.D.={{\left[ \dfrac{d}{dx}(2\tan x) \right]}_{x=1}}={{\left[ \dfrac{2}{1+\mathop{x}^{2}} \right]}_{x=1}}=\dfrac{2}{2}=1\]
\[L.H.D.={{\left[ \dfrac{d}{dx}(\pi -2\tan x) \right]}_{x=1}}={{\left[ \dfrac{-2}{1+\mathop{x}^{2}} \right]}_{x=1}}=\dfrac{-2}{2}=-1\]
\[\therefore L.H.D.\ne R.H.D.\]
Therefore f(x) is not differentiable at 1………………………………………….. (7)
As, f(x) is not differentiable at \[x=1\] and \[x=-1\] we can say that f(x) is only differentiable only in its domain with open intervals i.e. In \[(-1,1)\].
\[\because \][From (6) and (7)]
The domain can also be expressed as \[\left| x \right|<1\]
This can be shown as follows,
\[\left| x \right|<1\equiv \] \[x<1\] And \[-x<1\]
\[\equiv \]\[x\in [0,1)\] And \[x>-1\]
\[\equiv \]\[x\in [0,1)\] And \[x\in (-1,0]\]
\[\left| x \right|<1\] \[\equiv \] \[x\in (-1,1)\]
Option (a) (b) and (c) are the correct answers.
Note:
Convert the limits very much carefully as there are chances of silly mistakes.
We should know how the functions can be defined in different domains as given below,
\[f(x)=-\pi -2{{\tan }^{-1}}x\] For \[x<-1\]
\[f(x)=2{{\tan }^{-1}}x\] For \[-1\le x\le 1\]
\[f(x)=\pi -2{{\tan }^{-1}}x\] For \[x>1\]
In a given problem we have to find whether the function is differentiable and if yes then at what values?
For that we will just rewrite given equation,
\[f(x)={{\sin }^{-1}}\left( \dfrac{2x}{1+\mathop{x}^{2}} \right)\]
Now, to simplify the problem substitute
$x=\tan \theta $ In the above problem. Therefore, $\theta ={{\tan }^{-1}}x$…………………………………. (1)
\[\therefore f(x)={{\sin }^{-1}}\left( \dfrac{2\tan \theta }{1+\mathop{\tan \theta }^{2}} \right)\]
To proceed further we should know the Half Angle formula for \[\sin 2\theta \] which is given below,
Formula:
\[\sin 2\theta =\dfrac{2\tan \theta }{1+\mathop{\tan \theta }^{2}}\]
Therefore \[f(x)\] will become,
\[\therefore f(x)={{\sin }^{-1}}\left( \sin 2\theta \right)\] ……………………….. (2)
If we have to simplify further then we should know it’s simplification in various domains, which are given below,
Formulae:
\[{{\sin }^{-1}}\left( \sin x \right)=-\pi -x\] For \[x<\dfrac{-\pi }{2}\]
For \[\dfrac{-\pi }{2}\le x\le \dfrac{\pi }{2}\]
\[{{\sin }^{-1}}\left( \sin x \right)=\pi -x\] For \[x>\dfrac{\pi }{2}\]
We can write equation (2) according to above formulae by replacing ‘x’ with \[2\theta \]
As, \[f(x)={{\sin }^{-1}}\left( \sin 2\theta \right)\]
\[f(x)=-\pi -2\theta \] For \[2\theta <\dfrac{-\pi }{2}\]……………………………. (2)
\[f(x)=2\theta \] For \[\dfrac{-\pi }{2}\le 2\theta \le \dfrac{\pi }{2}\]…………………….. (3)
\[f(x)=\pi -2\theta \] For \[2\theta >\dfrac{\pi }{2}\]……………………………… (4)
Before substituting the value of \[\theta \] we will first convert limits,
As, \[\dfrac{-\pi }{2}\le 2\theta \le \dfrac{\pi }{2}\]
Dividing by 2 we will get,
\[\dfrac{-\pi }{4}\le \theta \le \dfrac{\pi }{4}\]
Take tangent of all angles,
\[\tan \dfrac{-\pi }{4}\le \tan \theta \le \tan \dfrac{\pi }{4}\]
\[\therefore -\tan \dfrac{\pi }{4}\le \tan \theta \le \tan \dfrac{\pi }{4}\]
\[\therefore -1\le \tan \theta \le 1\]
From (1) we can write above equation as,
\[\therefore -1\le x\le 1\]………………………………… (5)
Now, we can easily write equations (2), (3), (4) by substituting $x=\tan \theta $ from (1) and replacing limits with the help of (5),
\[f(x)=-\pi -2\tan x\] For \[x<-1\]
\[f(x)=2\tan x\] For \[-1\le x\le 1\]
\[f(x)=\pi -2\tan x\] For \[x>1\]
Now we will check the differentiability at -1, for that we are going to use the formula given below for several times.
Formula:
\[\dfrac{d}{dx}\tan x=\dfrac{1}{1+\mathop{x}^{2}}\]
\[L.H.D.={{\left[ \dfrac{d}{dx}(-\pi -2\tan x) \right]}_{x=-1}}={{\left[ \dfrac{-2}{1+\mathop{x}^{2}} \right]}_{x=-1}}=\dfrac{-2}{2}=-1\]\[\dfrac{d}{dx}\tan x=\dfrac{1}{1+\mathop{x}^{2}}\]
\[R.H.D.={{\left[ \dfrac{d}{dx}(2\tan x) \right]}_{x=-1}}={{\left[ \dfrac{2}{1+\mathop{x}^{2}} \right]}_{x=-1}}=\dfrac{2}{2}=1\]
\[\therefore L.H.D.\ne R.H.D.\]
Therefore f(x) is not differentiable at -1…………………………………………. (6)
\[L.H.D.={{\left[ \dfrac{d}{dx}(2\tan x) \right]}_{x=1}}={{\left[ \dfrac{2}{1+\mathop{x}^{2}} \right]}_{x=1}}=\dfrac{2}{2}=1\]
\[L.H.D.={{\left[ \dfrac{d}{dx}(\pi -2\tan x) \right]}_{x=1}}={{\left[ \dfrac{-2}{1+\mathop{x}^{2}} \right]}_{x=1}}=\dfrac{-2}{2}=-1\]
\[\therefore L.H.D.\ne R.H.D.\]
Therefore f(x) is not differentiable at 1………………………………………….. (7)
As, f(x) is not differentiable at \[x=1\] and \[x=-1\] we can say that f(x) is only differentiable only in its domain with open intervals i.e. In \[(-1,1)\].
\[\because \][From (6) and (7)]
The domain can also be expressed as \[\left| x \right|<1\]
This can be shown as follows,
\[\left| x \right|<1\equiv \] \[x<1\] And \[-x<1\]
\[\equiv \]\[x\in [0,1)\] And \[x>-1\]
\[\equiv \]\[x\in [0,1)\] And \[x\in (-1,0]\]
\[\left| x \right|<1\] \[\equiv \] \[x\in (-1,1)\]
Option (a) (b) and (c) are the correct answers.
Note:
Convert the limits very much carefully as there are chances of silly mistakes.
We should know how the functions can be defined in different domains as given below,
\[f(x)=-\pi -2{{\tan }^{-1}}x\] For \[x<-1\]
\[f(x)=2{{\tan }^{-1}}x\] For \[-1\le x\le 1\]
\[f(x)=\pi -2{{\tan }^{-1}}x\] For \[x>1\]
Recently Updated Pages
JEE Main 2021 July 20 Shift 2 Question Paper with Answer Key

JEE Atomic Structure and Chemical Bonding important Concepts and Tips

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

JEE Main 2021 July 25 Shift 2 Question Paper with Answer Key

JEE Main 2021 July 25 Shift 1 Question Paper with Answer Key

JEE Main 2021 July 22 Shift 2 Question Paper with Answer Key

Trending doubts
JEE Main Exam Marking Scheme: Detailed Breakdown of Marks and Negative Marking

JEE Main 2023 January 24 Shift 2 Question Paper with Answer Keys & Solutions

JEE Main Login 2045: Step-by-Step Instructions and Details

Ideal and Non-Ideal Solutions Raoult's Law - JEE

Inertial and Non-Inertial Frame of Reference - JEE Important Topic

Physics Average Value and RMS Value JEE Main 2025

Other Pages
Clemmenson and Wolff Kishner Reductions for JEE

Geostationary Satellites and Geosynchronous Satellites - JEE Important Topic

JEE Main 2022 June 29 Shift 2 Question Paper with Answer Keys & Solutions

Current Loop as Magnetic Dipole and Its Derivation for JEE

JEE Main Marks Vs Percentile 2025: Calculate Percentile Based on Marks

JEE Main 2025 - Session 2 Registration Open | Exam Dates, Answer Key, PDF
