
If $f(x) = \cos x\cos 2x\cos 4x\cos 8x\cos 16x$, then $f'(\dfrac{\pi }{4})$ is equal to:
A. $\sqrt 2 $
B. $\dfrac{1}{{\sqrt 2 }}$
C. $0$
D. $\dfrac{{\sqrt 3 }}{2}$
Answer
163.2k+ views
Hint: Multiply and divide $\cos x\cos 2x\cos 4x\cos 8x\cos 16x$by $2\sin x$ and then use the formula \[2\sin A\cos A = \sin 2A\]. Multiply and divide the numerator in the next step by 2 and use the same formula \[2\sin A\cos A = \sin 2A\]. After simplifying $f(x)$ use the quotient rule and chain rule for differentiation.
Formula Used:
\[2\sin A\cos A = \sin 2A\]
Quotient rule – If $u$ and $v$ are differentiable with respect to x then $\dfrac{d}{{dx}}\dfrac{u}{v} = \dfrac{{v\dfrac{{du}}{{dx}} - u\dfrac{{dv}}{{dx}}}}{{{v^2}}}$
Complete step by step Solution:
It is given to us that $f(x) = \cos x\cos 2x\cos 4x\cos 8x\cos 16x$.
Multiply and divide $\cos x\cos 2x\cos 4x\cos 8x\cos 16x$ by $2\sin x$ and use the formula \[2\sin A\cos A = \sin 2A\]
\[\dfrac{{2\sin x\cos x\cos 2x\cos 4x\cos 8x\cos 16x}}{{2\sin x}}\] $ = $ $\dfrac{{\sin 2x\cos 2x\cos 4x\cos 8x\cos 16x}}{{2\sin x}}$
Multiply the numerator and denominator by 2
\[\dfrac{{2\sin 2x\cos 2x\cos 4x\cos 8x\cos 16x}}{{4\sin x}}\]\[\]$ = $ $\dfrac{{\sin 4x\cos 4x\cos 8x\cos 16x}}{{4\sin x}}$
Again, multiply the numerator and denominator by 2
$\dfrac{{2\sin 4x\cos 4x\cos 8x\cos 16x}}{{8\sin x}}$ $ = $ $\dfrac{{\sin 8x\cos 8x\cos 16x}}{{8\sin x}}$
Again, multiply the numerator and denominator by 2
$\dfrac{{2\sin 8x\cos 8x\cos 16x}}{{16\sin x}}$ $ = $ $\dfrac{{\sin 16x\cos 16x}}{{16\sin x}}$
Again, multiply the numerator and denominator by 2
$\dfrac{{2\sin 16x\cos 16x}}{{32\sin x}}$ $ = $ $\dfrac{{\sin 32x}}{{32\sin x}}$
Therefore, $f(x) = \dfrac{{\sin 32x}}{{32\sin x}}$
Using the chain rule and quotient rule,
$f'(x) = \dfrac{{32\sin x\dfrac{d}{{dx}}\sin 32x - \sin 32x\dfrac{d}{{dx}}32\sin x}}{{{{(32\sin x)}^2}}}$
$f'(x) = \dfrac{{1024\sin x\cos 32x - 32\sin 32x\cos x}}{{1024{{\sin }^2}x}}$
Dividing the numerator and denominator by 32,
$f'(x) = \dfrac{{32\sin x\cos 32x - \sin 32x\cos x}}{{32{{\sin }^2}x}}$
$f'(\dfrac{\pi }{4}) = \dfrac{{32\sin (\dfrac{\pi }{4})\cos (8\pi ) - \sin (8\pi )\cos (\dfrac{\pi }{4})}}{{32{{\sin }^2}(\dfrac{\pi }{4})}}$
$f'(\dfrac{\pi }{4}) = \dfrac{{32 \times \dfrac{1}{{\sqrt 2 }} \times 1 - 0 \times \dfrac{1}{{\sqrt 2 }}}}{{32 \times \dfrac{1}{2}}} = \dfrac{{32 \times \dfrac{1}{{\sqrt 2 }}}}{{32 \times \dfrac{1}{2}}} = \dfrac{2}{{\sqrt 2 }}$
Therefore, $f'(\dfrac{\pi }{4}) = \sqrt 2 $
Hence, the correct option is (A).
Note: Chain rule – If $F(x) = f(g(x))$ then $F'(x) = f'(g(x)).g'(x)$. Quotient rule – If $u$ and $v$ are differentiable with respect to x then $\dfrac{d}{{dx}}\dfrac{u}{v} = \dfrac{{v\dfrac{{du}}{{dx}} - u\dfrac{{dv}}{{dx}}}}{{{v^2}}}$. Instead of considering $32\sin x$ as v, we can also take $\dfrac{1}{{32}}$ as a constant and just consider $\sin x$ as v.
Formula Used:
\[2\sin A\cos A = \sin 2A\]
Quotient rule – If $u$ and $v$ are differentiable with respect to x then $\dfrac{d}{{dx}}\dfrac{u}{v} = \dfrac{{v\dfrac{{du}}{{dx}} - u\dfrac{{dv}}{{dx}}}}{{{v^2}}}$
Complete step by step Solution:
It is given to us that $f(x) = \cos x\cos 2x\cos 4x\cos 8x\cos 16x$.
Multiply and divide $\cos x\cos 2x\cos 4x\cos 8x\cos 16x$ by $2\sin x$ and use the formula \[2\sin A\cos A = \sin 2A\]
\[\dfrac{{2\sin x\cos x\cos 2x\cos 4x\cos 8x\cos 16x}}{{2\sin x}}\] $ = $ $\dfrac{{\sin 2x\cos 2x\cos 4x\cos 8x\cos 16x}}{{2\sin x}}$
Multiply the numerator and denominator by 2
\[\dfrac{{2\sin 2x\cos 2x\cos 4x\cos 8x\cos 16x}}{{4\sin x}}\]\[\]$ = $ $\dfrac{{\sin 4x\cos 4x\cos 8x\cos 16x}}{{4\sin x}}$
Again, multiply the numerator and denominator by 2
$\dfrac{{2\sin 4x\cos 4x\cos 8x\cos 16x}}{{8\sin x}}$ $ = $ $\dfrac{{\sin 8x\cos 8x\cos 16x}}{{8\sin x}}$
Again, multiply the numerator and denominator by 2
$\dfrac{{2\sin 8x\cos 8x\cos 16x}}{{16\sin x}}$ $ = $ $\dfrac{{\sin 16x\cos 16x}}{{16\sin x}}$
Again, multiply the numerator and denominator by 2
$\dfrac{{2\sin 16x\cos 16x}}{{32\sin x}}$ $ = $ $\dfrac{{\sin 32x}}{{32\sin x}}$
Therefore, $f(x) = \dfrac{{\sin 32x}}{{32\sin x}}$
Using the chain rule and quotient rule,
$f'(x) = \dfrac{{32\sin x\dfrac{d}{{dx}}\sin 32x - \sin 32x\dfrac{d}{{dx}}32\sin x}}{{{{(32\sin x)}^2}}}$
$f'(x) = \dfrac{{1024\sin x\cos 32x - 32\sin 32x\cos x}}{{1024{{\sin }^2}x}}$
Dividing the numerator and denominator by 32,
$f'(x) = \dfrac{{32\sin x\cos 32x - \sin 32x\cos x}}{{32{{\sin }^2}x}}$
$f'(\dfrac{\pi }{4}) = \dfrac{{32\sin (\dfrac{\pi }{4})\cos (8\pi ) - \sin (8\pi )\cos (\dfrac{\pi }{4})}}{{32{{\sin }^2}(\dfrac{\pi }{4})}}$
$f'(\dfrac{\pi }{4}) = \dfrac{{32 \times \dfrac{1}{{\sqrt 2 }} \times 1 - 0 \times \dfrac{1}{{\sqrt 2 }}}}{{32 \times \dfrac{1}{2}}} = \dfrac{{32 \times \dfrac{1}{{\sqrt 2 }}}}{{32 \times \dfrac{1}{2}}} = \dfrac{2}{{\sqrt 2 }}$
Therefore, $f'(\dfrac{\pi }{4}) = \sqrt 2 $
Hence, the correct option is (A).
Note: Chain rule – If $F(x) = f(g(x))$ then $F'(x) = f'(g(x)).g'(x)$. Quotient rule – If $u$ and $v$ are differentiable with respect to x then $\dfrac{d}{{dx}}\dfrac{u}{v} = \dfrac{{v\dfrac{{du}}{{dx}} - u\dfrac{{dv}}{{dx}}}}{{{v^2}}}$. Instead of considering $32\sin x$ as v, we can also take $\dfrac{1}{{32}}$ as a constant and just consider $\sin x$ as v.
Recently Updated Pages
Geometry of Complex Numbers – Topics, Reception, Audience and Related Readings

JEE Main 2021 July 25 Shift 1 Question Paper with Answer Key

JEE Main 2021 July 22 Shift 2 Question Paper with Answer Key

JEE Atomic Structure and Chemical Bonding important Concepts and Tips

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

JEE Electricity and Magnetism Important Concepts and Tips for Exam Preparation

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Displacement-Time Graph and Velocity-Time Graph for JEE

Degree of Dissociation and Its Formula With Solved Example for JEE

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation

Instantaneous Velocity - Formula based Examples for JEE

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

JEE Advanced 2025 Notes

JEE Main Chemistry Question Paper with Answer Keys and Solutions

Total MBBS Seats in India 2025: Government and Private Medical Colleges

NEET Total Marks 2025
