
If \[f:R\to R,g:R\to R\] and \[h:R\to R\] are such that $f(x)={{x}^{2}},~g(x)=\tan x$ and $h(x)=\log x$ then the value of $(ho(gof))(x)$if $x=\sqrt{\dfrac{\pi }{4}}$ will be
A. $0$
B. $1$
C. $-1$
D. $\pi $
Answer
164.1k+ views
Hint: To solve this question, we will use the formula of composition of functions. We will rewrite the given function using composition of function and substitute the value of the functions and derive an equation. We will then put the value of $x$ in that equation and derive the result.
Formula Used: If there are two functions $f$and $g$, then the composite function $gof(x)$ can be written as $gof(x)=g(f(x))$.
Complete step by step solution: We are given three functions $f(x)={{x}^{2}},~g(x)=\tan x$, $h(x)=\log x$ and we have to determine the value of $(ho(gof))(x)$ if $x=\sqrt{\dfrac{\pi }{4}}$.
We will rewrite the given equation,
$(ho(gof))(x)=h(g(f(x)))$
We will now substitute the value of the function $f(x)={{x}^{2}}$ in the above equation.
$\begin{align}
& (ho(gof))(x)=h(g(f(x))) \\
& =h(g({{x}^{2}}))
\end{align}$
We will now substitute the value of the function$g(x)=\tan x$ in place of $x$ in the above equation.
$\begin{align}
& (ho(gof))(x)=h(g({{x}^{2}})) \\
& =h(\tan {{x}^{2}})
\end{align}$
Now we will substitute the value of the function $h(x)=\log x$ in the above equation.
$\begin{align}
& (ho(gof))(x)=h(\tan {{x}^{2}}) \\
& =\log (\tan {{x}^{2}})
\end{align}$
We will now substitute the value $x=\sqrt{\dfrac{\pi }{4}}$ in the above equation.
\[\begin{align}
& (ho(gof))(x)=\log (\tan {{x}^{2}}) \\
& =\log \left( \tan {{\left( \sqrt{\dfrac{\pi }{4}} \right)}^{2}} \right)
\end{align}\]
\[\begin{align}
& (ho(gof))(x)=\log \tan \dfrac{\pi }{4} \\
& =\log 1 \\
& =0
\end{align}\]
The value of $(ho(gof))(x)$ is $0$ if \[f:R\to R,g:R\to R\] and \[h:R\to R\] such that $f(x)={{x}^{2}},~g(x)=\tan x$, $h(x)=\log x$ and $x=\sqrt{\dfrac{\pi }{4}}$. Hence the correct option is (A).
Note: The composite functions can be defined as the combination of one or two functions to result in another function. If we have two functions $f(x)$ and $g(x)$, then the function inside the brackets will be the input for the function outside of the brackets. That is,
In composite function $f(g(x))$, $g(x)$ will be the input for the function $f(x)$ and in function $g(f(x))$,~$f(x)$ will be the input for the function $g(x)$.
The function $f(g(x))$ can be also shown as $fog(x)$.
Formula Used: If there are two functions $f$and $g$, then the composite function $gof(x)$ can be written as $gof(x)=g(f(x))$.
Complete step by step solution: We are given three functions $f(x)={{x}^{2}},~g(x)=\tan x$, $h(x)=\log x$ and we have to determine the value of $(ho(gof))(x)$ if $x=\sqrt{\dfrac{\pi }{4}}$.
We will rewrite the given equation,
$(ho(gof))(x)=h(g(f(x)))$
We will now substitute the value of the function $f(x)={{x}^{2}}$ in the above equation.
$\begin{align}
& (ho(gof))(x)=h(g(f(x))) \\
& =h(g({{x}^{2}}))
\end{align}$
We will now substitute the value of the function$g(x)=\tan x$ in place of $x$ in the above equation.
$\begin{align}
& (ho(gof))(x)=h(g({{x}^{2}})) \\
& =h(\tan {{x}^{2}})
\end{align}$
Now we will substitute the value of the function $h(x)=\log x$ in the above equation.
$\begin{align}
& (ho(gof))(x)=h(\tan {{x}^{2}}) \\
& =\log (\tan {{x}^{2}})
\end{align}$
We will now substitute the value $x=\sqrt{\dfrac{\pi }{4}}$ in the above equation.
\[\begin{align}
& (ho(gof))(x)=\log (\tan {{x}^{2}}) \\
& =\log \left( \tan {{\left( \sqrt{\dfrac{\pi }{4}} \right)}^{2}} \right)
\end{align}\]
\[\begin{align}
& (ho(gof))(x)=\log \tan \dfrac{\pi }{4} \\
& =\log 1 \\
& =0
\end{align}\]
The value of $(ho(gof))(x)$ is $0$ if \[f:R\to R,g:R\to R\] and \[h:R\to R\] such that $f(x)={{x}^{2}},~g(x)=\tan x$, $h(x)=\log x$ and $x=\sqrt{\dfrac{\pi }{4}}$. Hence the correct option is (A).
Note: The composite functions can be defined as the combination of one or two functions to result in another function. If we have two functions $f(x)$ and $g(x)$, then the function inside the brackets will be the input for the function outside of the brackets. That is,
In composite function $f(g(x))$, $g(x)$ will be the input for the function $f(x)$ and in function $g(f(x))$,~$f(x)$ will be the input for the function $g(x)$.
The function $f(g(x))$ can be also shown as $fog(x)$.
Recently Updated Pages
Geometry of Complex Numbers – Topics, Reception, Audience and Related Readings

JEE Main 2021 July 25 Shift 1 Question Paper with Answer Key

JEE Main 2021 July 22 Shift 2 Question Paper with Answer Key

JEE Atomic Structure and Chemical Bonding important Concepts and Tips

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

JEE Electricity and Magnetism Important Concepts and Tips for Exam Preparation

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

Atomic Structure - Electrons, Protons, Neutrons and Atomic Models

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Displacement-Time Graph and Velocity-Time Graph for JEE

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation

Degree of Dissociation and Its Formula With Solved Example for JEE

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

NCERT Solutions for Class 11 Maths Chapter 4 Complex Numbers and Quadratic Equations

Instantaneous Velocity - Formula based Examples for JEE

NCERT Solutions for Class 11 Maths Chapter 6 Permutations and Combinations

NCERT Solutions for Class 11 Maths Chapter 8 Sequences and Series
