
.If \[f:R \to R\]and \[g:R \to R\]are given by \[f(x) = \left| x \right|\]and \[g(x) = \left[ x \right]\]for each \[x \in R\], then \[\{ x \in R:g(f(x)) \le f(g(x))\} \]=
A) \[Z \cup ( - \infty ,0)\]
B) \[x = \dfrac{9}{2}\]
C) Z
D) R
Answer
219.6k+ views
Hint: Here are two function f which is mapping from real number to real number and g which is also mapping from real number to real number. We have to relate the function f to g and then g to f. then we will get the relation of \[g[f(x)]\] to \[f[g(x)]\].
Formula Used:For every \[x \in R\]
If \[f(x) = x\], \[g(x) = x'\]
\[f[g(x)] = f(x')\]
=\[x'\]
Also \[\forall x \in R\], \[\left[ { - x} \right]\]=\[ - x\]
\[\left| x \right| = x\]
Complete step by step solution:Given \[f:R \to R\]and \[g:R \to R\]
\[f(x) = \left| x \right|\]and \[g(x) = \left[ x \right]\], \[\forall x \in R\]
Now given \[g[f(x)] \le f[g(x)]\]
\[g(\left| x \right|) \le f(\left[ x \right])\]
\[\left[ {\left| x \right|} \right] \le \left| {\left[ x \right]} \right|\]
Here now two cases arises,
Case (1): \[x = ( - \infty ,0)\]
Put \[x = \dfrac{{ - 9}}{2}\]
\[\left[ {\left| x \right|} \right] = \left[ {\dfrac{9}{2}} \right]\]
\[\left[ {\left| x \right|} \right] = \left[ {4.5} \right]\]
=4
Also, \[\left| {\left[ x \right]} \right| = \left[ {\dfrac{{ - 9}}{2}} \right]\]
\[\left| {\left[ x \right]} \right| = \left| { - 5} \right|\]
=5
Thus \[\left[ {\left| x \right|} \right] \le \left| {\left[ x \right]} \right|\]
Case (2): \[x = (0, + \infty )\]
\[x = \dfrac{9}{2}\]
\[\left[ {\left| x \right|} \right] = \left[ {\left| {\dfrac{9}{2}} \right|} \right]\]
\[\left[ {\left| x \right|} \right] = \left[ {4.5} \right]\]
=4
\[\left| {\left[ x \right]} \right| = \left| {\dfrac{9}{2}} \right|\]
=4
Thus \[\left[ {\left| x \right|} \right] = \left| {\left[ x \right]} \right|\]
Hence we can see that this function\[g[f(x)] \le f[g(x)]\]is true for all the value of real number.
Option ‘D’ is correct
Note:Student must remember when the closed interval function of \[\left[ x \right]\]is negative then its value is negative and when mod of function \[\left| x \right|\]is negative then its value is positive.
Formula Used:For every \[x \in R\]
If \[f(x) = x\], \[g(x) = x'\]
\[f[g(x)] = f(x')\]
=\[x'\]
Also \[\forall x \in R\], \[\left[ { - x} \right]\]=\[ - x\]
\[\left| x \right| = x\]
Complete step by step solution:Given \[f:R \to R\]and \[g:R \to R\]
\[f(x) = \left| x \right|\]and \[g(x) = \left[ x \right]\], \[\forall x \in R\]
Now given \[g[f(x)] \le f[g(x)]\]
\[g(\left| x \right|) \le f(\left[ x \right])\]
\[\left[ {\left| x \right|} \right] \le \left| {\left[ x \right]} \right|\]
Here now two cases arises,
Case (1): \[x = ( - \infty ,0)\]
Put \[x = \dfrac{{ - 9}}{2}\]
\[\left[ {\left| x \right|} \right] = \left[ {\dfrac{9}{2}} \right]\]
\[\left[ {\left| x \right|} \right] = \left[ {4.5} \right]\]
=4
Also, \[\left| {\left[ x \right]} \right| = \left[ {\dfrac{{ - 9}}{2}} \right]\]
\[\left| {\left[ x \right]} \right| = \left| { - 5} \right|\]
=5
Thus \[\left[ {\left| x \right|} \right] \le \left| {\left[ x \right]} \right|\]
Case (2): \[x = (0, + \infty )\]
\[x = \dfrac{9}{2}\]
\[\left[ {\left| x \right|} \right] = \left[ {\left| {\dfrac{9}{2}} \right|} \right]\]
\[\left[ {\left| x \right|} \right] = \left[ {4.5} \right]\]
=4
\[\left| {\left[ x \right]} \right| = \left| {\dfrac{9}{2}} \right|\]
=4
Thus \[\left[ {\left| x \right|} \right] = \left| {\left[ x \right]} \right|\]
Hence we can see that this function\[g[f(x)] \le f[g(x)]\]is true for all the value of real number.
Option ‘D’ is correct
Note:Student must remember when the closed interval function of \[\left[ x \right]\]is negative then its value is negative and when mod of function \[\left| x \right|\]is negative then its value is positive.
Recently Updated Pages
Geometry of Complex Numbers Explained

Electricity and Magnetism Explained: Key Concepts & Applications

JEE Energetics Important Concepts and Tips for Exam Preparation

JEE Isolation, Preparation and Properties of Non-metals Important Concepts and Tips for Exam Preparation

JEE Main 2021 July 25 Shift 1 Question Paper with Answer Key

JEE Main 2021 July 22 Shift 2 Question Paper with Answer Key

Trending doubts
Understanding Atomic Structure for Beginners

Understanding Centrifugal Force in Physics

JEE Main Marking Scheme 2026- Paper-Wise Marks Distribution and Negative Marking Details

Degree of Dissociation: Meaning, Formula, Calculation & Uses

Understanding Average and RMS Value in Electrical Circuits

Understanding Entropy Changes in Different Processes

Other Pages
Common Ion Effect: Concept, Applications, and Problem-Solving

Understanding Excess Pressure Inside a Liquid Drop

Understanding Elastic Collisions in Two Dimensions

Devuthani Ekadashi 2025: Correct Date, Shubh Muhurat, Parana Time & Puja Vidhi

Quadratic Equation Questions with Solutions & PDF Practice Sets

Difference Between Exothermic and Endothermic Reactions: Key Differences, Examples & Diagrams

