
If $f\left( x \right) = x{e^{x\left( {1 - x} \right)}}$, then $f\left( x \right)$ is
A. increasing on $R$
B. decreasing on $\left[ { - \left( {\dfrac{1}{2}} \right),1} \right]$
C. increasing on $\left[ { - \left( {\dfrac{1}{2}} \right),1} \right]$
D. decreasing on $R$
Answer
232.8k+ views
Hint: Differentiate the given function $x{e^{x\left( {1 - x} \right)}}$ with respect to $x$, then put the first derivative equal to zero to find the value of $x$ or range of $x$. Now, check whether $f\left( x \right)$ is increasing or decreasing in that range by putting required values of $x$in the function.
Formula Used:
Chain rule –
$\dfrac{d}{{dx}}\left( {f\left( {g\left( x \right)} \right)} \right) = f'\left( {g\left( x \right)} \right) \times \dfrac{d}{{dx}}g\left( x \right)$
Product rule –
$\dfrac{d}{{dx}}\left( {f\left( x \right)g\left( x \right)} \right) = f\left( x \right)\dfrac{d}{{dx}}g\left( x \right) + g\left( x \right)\dfrac{d}{{dx}}f\left( x \right)$
Complete step by step solution:
Given that,
$f\left( x \right) = x{e^{x\left( {1 - x} \right)}}$
Differentiate $f\left( x \right)$ with respect to $x$,
$f'\left( x \right) = {e^{x\left( {1 - x} \right)}}\dfrac{d}{{dx}}\left( x \right) + x\dfrac{d}{{dx}}\left( {{e^{x\left( {1 - x} \right)}}} \right)$
$f'\left( x \right) = {e^{x\left( {1 - x} \right)}}\left( 1 \right) + x{e^{x\left( {1 - x} \right)}}\left( {1 - 2x} \right)$
$f'\left( x \right) = {e^{x\left( {1 - x} \right)}} + x{e^{x\left( {1 - x} \right)}} - 2{x^2}{e^{x\left( {1 - x} \right)}}$
$f'\left( x \right) = {e^{x\left( {1 - x} \right)}}\left( {2{x^2} - x - 1} \right)$
$f'\left( x \right) = {e^{x\left( {1 - x} \right)}}\left( {2{x^2} - 2x + x - 1} \right)$
$f'\left( x \right) = {e^{x\left( {1 - x} \right)}}\left( {2x(x - 1) + 1\left( {x - 1} \right)} \right)$
$f'\left( x \right) = {e^{x\left( {1 - x} \right)}}\left( {2x + 1} \right)(x - 1)$
Take, $f'\left( x \right) = 0$
$ \Rightarrow x = - \dfrac{1}{2},1$
Here, $f'\left( x \right) > 0$ when $ - \dfrac{1}{2} < x < 1$
$ \Rightarrow $ $f\left( x \right)$ is increasing on $\left[ { - \left( {\dfrac{1}{2}} \right),1} \right]$
Option ‘C’ is correct
Note: The key concept involved in solving this problem is the good knowledge of chain rule. Students must remember that while doing derivatives using chain rule, do the derivative of the first function and then do the derivative of the function inside the first function.
Formula Used:
Chain rule –
$\dfrac{d}{{dx}}\left( {f\left( {g\left( x \right)} \right)} \right) = f'\left( {g\left( x \right)} \right) \times \dfrac{d}{{dx}}g\left( x \right)$
Product rule –
$\dfrac{d}{{dx}}\left( {f\left( x \right)g\left( x \right)} \right) = f\left( x \right)\dfrac{d}{{dx}}g\left( x \right) + g\left( x \right)\dfrac{d}{{dx}}f\left( x \right)$
Complete step by step solution:
Given that,
$f\left( x \right) = x{e^{x\left( {1 - x} \right)}}$
Differentiate $f\left( x \right)$ with respect to $x$,
$f'\left( x \right) = {e^{x\left( {1 - x} \right)}}\dfrac{d}{{dx}}\left( x \right) + x\dfrac{d}{{dx}}\left( {{e^{x\left( {1 - x} \right)}}} \right)$
$f'\left( x \right) = {e^{x\left( {1 - x} \right)}}\left( 1 \right) + x{e^{x\left( {1 - x} \right)}}\left( {1 - 2x} \right)$
$f'\left( x \right) = {e^{x\left( {1 - x} \right)}} + x{e^{x\left( {1 - x} \right)}} - 2{x^2}{e^{x\left( {1 - x} \right)}}$
$f'\left( x \right) = {e^{x\left( {1 - x} \right)}}\left( {2{x^2} - x - 1} \right)$
$f'\left( x \right) = {e^{x\left( {1 - x} \right)}}\left( {2{x^2} - 2x + x - 1} \right)$
$f'\left( x \right) = {e^{x\left( {1 - x} \right)}}\left( {2x(x - 1) + 1\left( {x - 1} \right)} \right)$
$f'\left( x \right) = {e^{x\left( {1 - x} \right)}}\left( {2x + 1} \right)(x - 1)$
Take, $f'\left( x \right) = 0$
$ \Rightarrow x = - \dfrac{1}{2},1$
Here, $f'\left( x \right) > 0$ when $ - \dfrac{1}{2} < x < 1$
$ \Rightarrow $ $f\left( x \right)$ is increasing on $\left[ { - \left( {\dfrac{1}{2}} \right),1} \right]$
Option ‘C’ is correct
Note: The key concept involved in solving this problem is the good knowledge of chain rule. Students must remember that while doing derivatives using chain rule, do the derivative of the first function and then do the derivative of the function inside the first function.
Recently Updated Pages
Geometry of Complex Numbers Explained

JEE General Topics in Chemistry Important Concepts and Tips

JEE Extractive Metallurgy Important Concepts and Tips for Exam Preparation

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

JEE Atomic Structure and Chemical Bonding important Concepts and Tips

Electricity and Magnetism Explained: Key Concepts & Applications

Trending doubts
JEE Main 2026: Session 2 Registration Open, City Intimation Slip, Exam Dates, Syllabus & Eligibility

JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

JEE Main Marking Scheme 2026- Paper-Wise Marks Distribution and Negative Marking Details

Understanding the Angle of Deviation in a Prism

Hybridisation in Chemistry – Concept, Types & Applications

How to Convert a Galvanometer into an Ammeter or Voltmeter

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Understanding the Electric Field of a Uniformly Charged Ring

Derivation of Equation of Trajectory Explained for Students

Understanding Electromagnetic Waves and Their Importance

Inductive Effect and Its Role in Acidic Strength

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

