
If $f\left( x \right) = x{e^{x\left( {1 - x} \right)}}$, then $f\left( x \right)$ is
A. increasing on $R$
B. decreasing on $\left[ { - \left( {\dfrac{1}{2}} \right),1} \right]$
C. increasing on $\left[ { - \left( {\dfrac{1}{2}} \right),1} \right]$
D. decreasing on $R$
Answer
217.8k+ views
Hint: Differentiate the given function $x{e^{x\left( {1 - x} \right)}}$ with respect to $x$, then put the first derivative equal to zero to find the value of $x$ or range of $x$. Now, check whether $f\left( x \right)$ is increasing or decreasing in that range by putting required values of $x$in the function.
Formula Used:
Chain rule –
$\dfrac{d}{{dx}}\left( {f\left( {g\left( x \right)} \right)} \right) = f'\left( {g\left( x \right)} \right) \times \dfrac{d}{{dx}}g\left( x \right)$
Product rule –
$\dfrac{d}{{dx}}\left( {f\left( x \right)g\left( x \right)} \right) = f\left( x \right)\dfrac{d}{{dx}}g\left( x \right) + g\left( x \right)\dfrac{d}{{dx}}f\left( x \right)$
Complete step by step solution:
Given that,
$f\left( x \right) = x{e^{x\left( {1 - x} \right)}}$
Differentiate $f\left( x \right)$ with respect to $x$,
$f'\left( x \right) = {e^{x\left( {1 - x} \right)}}\dfrac{d}{{dx}}\left( x \right) + x\dfrac{d}{{dx}}\left( {{e^{x\left( {1 - x} \right)}}} \right)$
$f'\left( x \right) = {e^{x\left( {1 - x} \right)}}\left( 1 \right) + x{e^{x\left( {1 - x} \right)}}\left( {1 - 2x} \right)$
$f'\left( x \right) = {e^{x\left( {1 - x} \right)}} + x{e^{x\left( {1 - x} \right)}} - 2{x^2}{e^{x\left( {1 - x} \right)}}$
$f'\left( x \right) = {e^{x\left( {1 - x} \right)}}\left( {2{x^2} - x - 1} \right)$
$f'\left( x \right) = {e^{x\left( {1 - x} \right)}}\left( {2{x^2} - 2x + x - 1} \right)$
$f'\left( x \right) = {e^{x\left( {1 - x} \right)}}\left( {2x(x - 1) + 1\left( {x - 1} \right)} \right)$
$f'\left( x \right) = {e^{x\left( {1 - x} \right)}}\left( {2x + 1} \right)(x - 1)$
Take, $f'\left( x \right) = 0$
$ \Rightarrow x = - \dfrac{1}{2},1$
Here, $f'\left( x \right) > 0$ when $ - \dfrac{1}{2} < x < 1$
$ \Rightarrow $ $f\left( x \right)$ is increasing on $\left[ { - \left( {\dfrac{1}{2}} \right),1} \right]$
Option ‘C’ is correct
Note: The key concept involved in solving this problem is the good knowledge of chain rule. Students must remember that while doing derivatives using chain rule, do the derivative of the first function and then do the derivative of the function inside the first function.
Formula Used:
Chain rule –
$\dfrac{d}{{dx}}\left( {f\left( {g\left( x \right)} \right)} \right) = f'\left( {g\left( x \right)} \right) \times \dfrac{d}{{dx}}g\left( x \right)$
Product rule –
$\dfrac{d}{{dx}}\left( {f\left( x \right)g\left( x \right)} \right) = f\left( x \right)\dfrac{d}{{dx}}g\left( x \right) + g\left( x \right)\dfrac{d}{{dx}}f\left( x \right)$
Complete step by step solution:
Given that,
$f\left( x \right) = x{e^{x\left( {1 - x} \right)}}$
Differentiate $f\left( x \right)$ with respect to $x$,
$f'\left( x \right) = {e^{x\left( {1 - x} \right)}}\dfrac{d}{{dx}}\left( x \right) + x\dfrac{d}{{dx}}\left( {{e^{x\left( {1 - x} \right)}}} \right)$
$f'\left( x \right) = {e^{x\left( {1 - x} \right)}}\left( 1 \right) + x{e^{x\left( {1 - x} \right)}}\left( {1 - 2x} \right)$
$f'\left( x \right) = {e^{x\left( {1 - x} \right)}} + x{e^{x\left( {1 - x} \right)}} - 2{x^2}{e^{x\left( {1 - x} \right)}}$
$f'\left( x \right) = {e^{x\left( {1 - x} \right)}}\left( {2{x^2} - x - 1} \right)$
$f'\left( x \right) = {e^{x\left( {1 - x} \right)}}\left( {2{x^2} - 2x + x - 1} \right)$
$f'\left( x \right) = {e^{x\left( {1 - x} \right)}}\left( {2x(x - 1) + 1\left( {x - 1} \right)} \right)$
$f'\left( x \right) = {e^{x\left( {1 - x} \right)}}\left( {2x + 1} \right)(x - 1)$
Take, $f'\left( x \right) = 0$
$ \Rightarrow x = - \dfrac{1}{2},1$
Here, $f'\left( x \right) > 0$ when $ - \dfrac{1}{2} < x < 1$
$ \Rightarrow $ $f\left( x \right)$ is increasing on $\left[ { - \left( {\dfrac{1}{2}} \right),1} \right]$
Option ‘C’ is correct
Note: The key concept involved in solving this problem is the good knowledge of chain rule. Students must remember that while doing derivatives using chain rule, do the derivative of the first function and then do the derivative of the function inside the first function.
Recently Updated Pages
Arithmetic, Geometric & Harmonic Progressions Explained

Cartesian Form of Vector Explained: Formula, Examples & Uses

Apparent Frequency Explained: Formula, Uses & Examples

Calorimetry: Definition, Principles & Calculations

Centrifugal Force Explained: Definition, Formula & Examples

Charge in a Magnetic Field: Definition, Formula & Examples

Trending doubts
JEE Main 2026: Application Form Open, Exam Dates, Syllabus, Eligibility & Question Papers

Derivation of Equation of Trajectory Explained for Students

Hybridisation in Chemistry – Concept, Types & Applications

Understanding the Angle of Deviation in a Prism

Understanding Collisions: Types and Examples for Students

How to Convert a Galvanometer into an Ammeter or Voltmeter

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Understanding Atomic Structure for Beginners

Ideal and Non-Ideal Solutions Explained for Class 12 Chemistry

Degree of Dissociation: Meaning, Formula, Calculation & Uses

Understanding Electromagnetic Waves and Their Importance

Understanding the Electric Field of a Uniformly Charged Ring

