
If \[f\left( x \right) = \left\{ {\begin{array}{*{20}{c}}{{e^{\cos x}}\sin x,}&{\left| x \right| \le 2}\\{2,}&{{\rm{otherwise}}}\end{array}} \right.\], then find the value of \[\int_{ - 2}^3 {f\left( x \right)dx} \].
A. 0
B. 1
C. 2
D. 3
Answer
215.7k+ views
Hint: First we will find the simplest form of the \[\left| x \right| \le 2\]. Then we will break the integration as a sum of two integrations. The limits of the first integration will be -2 to 2 and the function will be \[{e^{\cos x}}\sin x\] as \[\left| x \right| \le 2\]. The limits of the second integration will be 2 to 3. Then we will check whether \[{e^{\cos x}}\sin x\] is an odd function or an even function. According to that, we apply the property of definite integral and also integrate the second integration.
Formula Used:Definite integral property:
\[\int\limits_{ - a}^a {f\left( x \right)dx} = \left\{ {\begin{array}{*{20}{c}}0&{{\rm{if f(x) is an odd function}}}\\{2\int_0^a {f\left( x \right)dx} }&{{\rm{if f(x) is an even function}}}\end{array}} \right.\]
Complete step by step solution:We know that if \[\left| x \right| \le a\] then \[ - a \le x \le a\].
We can rewrite \[\left| x \right| \le 2\] as \[ - 2 \le x \le 2\].
Now rewrite the given information that is \[f\left( x \right) = \left\{ {\begin{array}{*{20}{c}}{{e^{\cos x}}\sin x,}&{\left| x \right| \le 2}\\{2,}&{{\rm{otherwise}}}\end{array}} \right.\].
\[f\left( x \right) = \left\{ {\begin{array}{*{20}{c}}{{e^{\cos x}}\sin x,}&{ - 2 \le x \le 2}\\{2,}&{{\rm{otherwise}}}\end{array}} \right.\]
It means when \[ - 2 \le x \le 2\], then \[f\left( x \right) = {e^{\cos x}}\sin x\].
And when \[x \notin \left[ { - 2,2} \right]\], then \[f\left( x \right) = 2\]
We will break the integration as a sum of two integrations. The limit of the first integration is -2 to 2 and the second integration is 2 to 3
Now we will the limits of the given integration,
\[\int_{ - 2}^3 {f\left( x \right)dx} \]
\[ = \int_{ - 2}^2 {f\left( x \right)dx} + \int_2^3 {f\left( x \right)dx} \]
Now substitute the value of \[f\left( x \right)\]:
\[ = \int_{ - 2}^2 {{e^{\cos x}}\sin xdx} + \int_2^3 {2dx} \] ……(i)
Assume that \[g\left( x \right) = {e^{\cos x}}\sin x\]
Now putting x = -x
\[g\left( { - x} \right) = {e^{\cos \left( { - x} \right)}}\sin \left( { - x} \right)\]
\[ \Rightarrow g\left( { - x} \right) = - {e^{\cos x}}\sin x\]
\[ \Rightarrow g\left( { - x} \right) = - g\left( x \right)\]
Therefore \[g\left( x \right)\] is an odd function.
According the definite integral property \[\int\limits_{ - a}^a {f\left( x \right)dx} = \left\{ {\begin{array}{*{20}{c}}0&{{\rm{if f(x) is an odd function}}}\\{2\int_0^a {f\left( x \right)dx} }&{{\rm{if f(x) is an even function}}}\end{array}} \right.\]:
\[\int_{ - 2}^2 {{e^{\cos x}}\sin xdx} = 0\]
Substitute \[\int_{ - 2}^2 {{e^{\cos x}}\sin xdx} = 0\] in equation (i):
\[\int_{ - 2}^2 {{e^{\cos x}}\sin xdx} + \int_2^3 {2dx} \]
\[ = 0 + \int_2^3 {2dx} \]
Integration the second integration:
\[ = 0 + 2\left[ x \right]_2^3\]
\[ = 0 + 2\left[ {3 - 2} \right]\]
\[ = 0 + 2 \cdot 1\]
\[ = 2\]
Option ‘C’ is correct
Note: Students try to solve the integration \[\int_{ - 2}^2 {{e^{\cos x}}\sin xdx} \] by using the substitution method. But it is a bit lengthy process. We can easily solve it by using the property of definite integral.
Formula Used:Definite integral property:
\[\int\limits_{ - a}^a {f\left( x \right)dx} = \left\{ {\begin{array}{*{20}{c}}0&{{\rm{if f(x) is an odd function}}}\\{2\int_0^a {f\left( x \right)dx} }&{{\rm{if f(x) is an even function}}}\end{array}} \right.\]
Complete step by step solution:We know that if \[\left| x \right| \le a\] then \[ - a \le x \le a\].
We can rewrite \[\left| x \right| \le 2\] as \[ - 2 \le x \le 2\].
Now rewrite the given information that is \[f\left( x \right) = \left\{ {\begin{array}{*{20}{c}}{{e^{\cos x}}\sin x,}&{\left| x \right| \le 2}\\{2,}&{{\rm{otherwise}}}\end{array}} \right.\].
\[f\left( x \right) = \left\{ {\begin{array}{*{20}{c}}{{e^{\cos x}}\sin x,}&{ - 2 \le x \le 2}\\{2,}&{{\rm{otherwise}}}\end{array}} \right.\]
It means when \[ - 2 \le x \le 2\], then \[f\left( x \right) = {e^{\cos x}}\sin x\].
And when \[x \notin \left[ { - 2,2} \right]\], then \[f\left( x \right) = 2\]
We will break the integration as a sum of two integrations. The limit of the first integration is -2 to 2 and the second integration is 2 to 3
Now we will the limits of the given integration,
\[\int_{ - 2}^3 {f\left( x \right)dx} \]
\[ = \int_{ - 2}^2 {f\left( x \right)dx} + \int_2^3 {f\left( x \right)dx} \]
Now substitute the value of \[f\left( x \right)\]:
\[ = \int_{ - 2}^2 {{e^{\cos x}}\sin xdx} + \int_2^3 {2dx} \] ……(i)
Assume that \[g\left( x \right) = {e^{\cos x}}\sin x\]
Now putting x = -x
\[g\left( { - x} \right) = {e^{\cos \left( { - x} \right)}}\sin \left( { - x} \right)\]
\[ \Rightarrow g\left( { - x} \right) = - {e^{\cos x}}\sin x\]
\[ \Rightarrow g\left( { - x} \right) = - g\left( x \right)\]
Therefore \[g\left( x \right)\] is an odd function.
According the definite integral property \[\int\limits_{ - a}^a {f\left( x \right)dx} = \left\{ {\begin{array}{*{20}{c}}0&{{\rm{if f(x) is an odd function}}}\\{2\int_0^a {f\left( x \right)dx} }&{{\rm{if f(x) is an even function}}}\end{array}} \right.\]:
\[\int_{ - 2}^2 {{e^{\cos x}}\sin xdx} = 0\]
Substitute \[\int_{ - 2}^2 {{e^{\cos x}}\sin xdx} = 0\] in equation (i):
\[\int_{ - 2}^2 {{e^{\cos x}}\sin xdx} + \int_2^3 {2dx} \]
\[ = 0 + \int_2^3 {2dx} \]
Integration the second integration:
\[ = 0 + 2\left[ x \right]_2^3\]
\[ = 0 + 2\left[ {3 - 2} \right]\]
\[ = 0 + 2 \cdot 1\]
\[ = 2\]
Option ‘C’ is correct
Note: Students try to solve the integration \[\int_{ - 2}^2 {{e^{\cos x}}\sin xdx} \] by using the substitution method. But it is a bit lengthy process. We can easily solve it by using the property of definite integral.
Recently Updated Pages
JEE Atomic Structure and Chemical Bonding important Concepts and Tips

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

Electricity and Magnetism Explained: Key Concepts & Applications

Chemical Properties of Hydrogen - Important Concepts for JEE Exam Preparation

JEE Energetics Important Concepts and Tips for Exam Preparation

JEE Isolation, Preparation and Properties of Non-metals Important Concepts and Tips for Exam Preparation

Trending doubts
JEE Main 2026: Application Form Open, Exam Dates, Syllabus, Eligibility & Question Papers

JEE Main Correction Window 2026 Session 1 Dates Announced - Edit Form Details, Dates and Link

Derivation of Equation of Trajectory Explained for Students

Hybridisation in Chemistry – Concept, Types & Applications

Understanding the Angle of Deviation in a Prism

Understanding Collisions: Types and Examples for Students

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

How to Convert a Galvanometer into an Ammeter or Voltmeter

Atomic Structure: Definition, Models, and Examples

Ideal and Non-Ideal Solutions Explained for Class 12 Chemistry

Degree of Dissociation: Meaning, Formula, Calculation & Uses

Understanding Electromagnetic Waves and Their Importance

