
If \[f\left( x \right) = \left\{ {\begin{array}{*{20}{c}}{{e^{\cos x}}\sin x,}&{\left| x \right| \le 2}\\{2,}&{{\rm{otherwise}}}\end{array}} \right.\], then find the value of \[\int_{ - 2}^3 {f\left( x \right)dx} \].
A. 0
B. 1
C. 2
D. 3
Answer
232.8k+ views
Hint: First we will find the simplest form of the \[\left| x \right| \le 2\]. Then we will break the integration as a sum of two integrations. The limits of the first integration will be -2 to 2 and the function will be \[{e^{\cos x}}\sin x\] as \[\left| x \right| \le 2\]. The limits of the second integration will be 2 to 3. Then we will check whether \[{e^{\cos x}}\sin x\] is an odd function or an even function. According to that, we apply the property of definite integral and also integrate the second integration.
Formula Used:Definite integral property:
\[\int\limits_{ - a}^a {f\left( x \right)dx} = \left\{ {\begin{array}{*{20}{c}}0&{{\rm{if f(x) is an odd function}}}\\{2\int_0^a {f\left( x \right)dx} }&{{\rm{if f(x) is an even function}}}\end{array}} \right.\]
Complete step by step solution:We know that if \[\left| x \right| \le a\] then \[ - a \le x \le a\].
We can rewrite \[\left| x \right| \le 2\] as \[ - 2 \le x \le 2\].
Now rewrite the given information that is \[f\left( x \right) = \left\{ {\begin{array}{*{20}{c}}{{e^{\cos x}}\sin x,}&{\left| x \right| \le 2}\\{2,}&{{\rm{otherwise}}}\end{array}} \right.\].
\[f\left( x \right) = \left\{ {\begin{array}{*{20}{c}}{{e^{\cos x}}\sin x,}&{ - 2 \le x \le 2}\\{2,}&{{\rm{otherwise}}}\end{array}} \right.\]
It means when \[ - 2 \le x \le 2\], then \[f\left( x \right) = {e^{\cos x}}\sin x\].
And when \[x \notin \left[ { - 2,2} \right]\], then \[f\left( x \right) = 2\]
We will break the integration as a sum of two integrations. The limit of the first integration is -2 to 2 and the second integration is 2 to 3
Now we will the limits of the given integration,
\[\int_{ - 2}^3 {f\left( x \right)dx} \]
\[ = \int_{ - 2}^2 {f\left( x \right)dx} + \int_2^3 {f\left( x \right)dx} \]
Now substitute the value of \[f\left( x \right)\]:
\[ = \int_{ - 2}^2 {{e^{\cos x}}\sin xdx} + \int_2^3 {2dx} \] ……(i)
Assume that \[g\left( x \right) = {e^{\cos x}}\sin x\]
Now putting x = -x
\[g\left( { - x} \right) = {e^{\cos \left( { - x} \right)}}\sin \left( { - x} \right)\]
\[ \Rightarrow g\left( { - x} \right) = - {e^{\cos x}}\sin x\]
\[ \Rightarrow g\left( { - x} \right) = - g\left( x \right)\]
Therefore \[g\left( x \right)\] is an odd function.
According the definite integral property \[\int\limits_{ - a}^a {f\left( x \right)dx} = \left\{ {\begin{array}{*{20}{c}}0&{{\rm{if f(x) is an odd function}}}\\{2\int_0^a {f\left( x \right)dx} }&{{\rm{if f(x) is an even function}}}\end{array}} \right.\]:
\[\int_{ - 2}^2 {{e^{\cos x}}\sin xdx} = 0\]
Substitute \[\int_{ - 2}^2 {{e^{\cos x}}\sin xdx} = 0\] in equation (i):
\[\int_{ - 2}^2 {{e^{\cos x}}\sin xdx} + \int_2^3 {2dx} \]
\[ = 0 + \int_2^3 {2dx} \]
Integration the second integration:
\[ = 0 + 2\left[ x \right]_2^3\]
\[ = 0 + 2\left[ {3 - 2} \right]\]
\[ = 0 + 2 \cdot 1\]
\[ = 2\]
Option ‘C’ is correct
Note: Students try to solve the integration \[\int_{ - 2}^2 {{e^{\cos x}}\sin xdx} \] by using the substitution method. But it is a bit lengthy process. We can easily solve it by using the property of definite integral.
Formula Used:Definite integral property:
\[\int\limits_{ - a}^a {f\left( x \right)dx} = \left\{ {\begin{array}{*{20}{c}}0&{{\rm{if f(x) is an odd function}}}\\{2\int_0^a {f\left( x \right)dx} }&{{\rm{if f(x) is an even function}}}\end{array}} \right.\]
Complete step by step solution:We know that if \[\left| x \right| \le a\] then \[ - a \le x \le a\].
We can rewrite \[\left| x \right| \le 2\] as \[ - 2 \le x \le 2\].
Now rewrite the given information that is \[f\left( x \right) = \left\{ {\begin{array}{*{20}{c}}{{e^{\cos x}}\sin x,}&{\left| x \right| \le 2}\\{2,}&{{\rm{otherwise}}}\end{array}} \right.\].
\[f\left( x \right) = \left\{ {\begin{array}{*{20}{c}}{{e^{\cos x}}\sin x,}&{ - 2 \le x \le 2}\\{2,}&{{\rm{otherwise}}}\end{array}} \right.\]
It means when \[ - 2 \le x \le 2\], then \[f\left( x \right) = {e^{\cos x}}\sin x\].
And when \[x \notin \left[ { - 2,2} \right]\], then \[f\left( x \right) = 2\]
We will break the integration as a sum of two integrations. The limit of the first integration is -2 to 2 and the second integration is 2 to 3
Now we will the limits of the given integration,
\[\int_{ - 2}^3 {f\left( x \right)dx} \]
\[ = \int_{ - 2}^2 {f\left( x \right)dx} + \int_2^3 {f\left( x \right)dx} \]
Now substitute the value of \[f\left( x \right)\]:
\[ = \int_{ - 2}^2 {{e^{\cos x}}\sin xdx} + \int_2^3 {2dx} \] ……(i)
Assume that \[g\left( x \right) = {e^{\cos x}}\sin x\]
Now putting x = -x
\[g\left( { - x} \right) = {e^{\cos \left( { - x} \right)}}\sin \left( { - x} \right)\]
\[ \Rightarrow g\left( { - x} \right) = - {e^{\cos x}}\sin x\]
\[ \Rightarrow g\left( { - x} \right) = - g\left( x \right)\]
Therefore \[g\left( x \right)\] is an odd function.
According the definite integral property \[\int\limits_{ - a}^a {f\left( x \right)dx} = \left\{ {\begin{array}{*{20}{c}}0&{{\rm{if f(x) is an odd function}}}\\{2\int_0^a {f\left( x \right)dx} }&{{\rm{if f(x) is an even function}}}\end{array}} \right.\]:
\[\int_{ - 2}^2 {{e^{\cos x}}\sin xdx} = 0\]
Substitute \[\int_{ - 2}^2 {{e^{\cos x}}\sin xdx} = 0\] in equation (i):
\[\int_{ - 2}^2 {{e^{\cos x}}\sin xdx} + \int_2^3 {2dx} \]
\[ = 0 + \int_2^3 {2dx} \]
Integration the second integration:
\[ = 0 + 2\left[ x \right]_2^3\]
\[ = 0 + 2\left[ {3 - 2} \right]\]
\[ = 0 + 2 \cdot 1\]
\[ = 2\]
Option ‘C’ is correct
Note: Students try to solve the integration \[\int_{ - 2}^2 {{e^{\cos x}}\sin xdx} \] by using the substitution method. But it is a bit lengthy process. We can easily solve it by using the property of definite integral.
Recently Updated Pages
Geometry of Complex Numbers Explained

JEE General Topics in Chemistry Important Concepts and Tips

JEE Extractive Metallurgy Important Concepts and Tips for Exam Preparation

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

Electricity and Magnetism Explained: Key Concepts & Applications

Algebra Made Easy: Step-by-Step Guide for Students

Trending doubts
JEE Main 2026: Admit Card Out, City Intimation Slip, Exam Dates, Syllabus & Eligibility

JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

JEE Main Marking Scheme 2026- Paper-Wise Marks Distribution and Negative Marking Details

Understanding the Angle of Deviation in a Prism

Hybridisation in Chemistry – Concept, Types & Applications

How to Convert a Galvanometer into an Ammeter or Voltmeter

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Understanding the Electric Field of a Uniformly Charged Ring

Derivation of Equation of Trajectory Explained for Students

Understanding Electromagnetic Waves and Their Importance

Inductive Effect and Its Role in Acidic Strength

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

