
If \[f\left( x \right) = \left\{ {\begin{array}{*{20}{c}}{{e^{\cos x}}\sin x,}&{\left| x \right| \le 2}\\{2,}&{{\rm{otherwise}}}\end{array}} \right.\], then find the value of \[\int_{ - 2}^3 {f\left( x \right)dx} \].
A. 0
B. 1
C. 2
D. 3
Answer
162.3k+ views
Hint: First we will find the simplest form of the \[\left| x \right| \le 2\]. Then we will break the integration as a sum of two integrations. The limits of the first integration will be -2 to 2 and the function will be \[{e^{\cos x}}\sin x\] as \[\left| x \right| \le 2\]. The limits of the second integration will be 2 to 3. Then we will check whether \[{e^{\cos x}}\sin x\] is an odd function or an even function. According to that, we apply the property of definite integral and also integrate the second integration.
Formula Used:Definite integral property:
\[\int\limits_{ - a}^a {f\left( x \right)dx} = \left\{ {\begin{array}{*{20}{c}}0&{{\rm{if f(x) is an odd function}}}\\{2\int_0^a {f\left( x \right)dx} }&{{\rm{if f(x) is an even function}}}\end{array}} \right.\]
Complete step by step solution:We know that if \[\left| x \right| \le a\] then \[ - a \le x \le a\].
We can rewrite \[\left| x \right| \le 2\] as \[ - 2 \le x \le 2\].
Now rewrite the given information that is \[f\left( x \right) = \left\{ {\begin{array}{*{20}{c}}{{e^{\cos x}}\sin x,}&{\left| x \right| \le 2}\\{2,}&{{\rm{otherwise}}}\end{array}} \right.\].
\[f\left( x \right) = \left\{ {\begin{array}{*{20}{c}}{{e^{\cos x}}\sin x,}&{ - 2 \le x \le 2}\\{2,}&{{\rm{otherwise}}}\end{array}} \right.\]
It means when \[ - 2 \le x \le 2\], then \[f\left( x \right) = {e^{\cos x}}\sin x\].
And when \[x \notin \left[ { - 2,2} \right]\], then \[f\left( x \right) = 2\]
We will break the integration as a sum of two integrations. The limit of the first integration is -2 to 2 and the second integration is 2 to 3
Now we will the limits of the given integration,
\[\int_{ - 2}^3 {f\left( x \right)dx} \]
\[ = \int_{ - 2}^2 {f\left( x \right)dx} + \int_2^3 {f\left( x \right)dx} \]
Now substitute the value of \[f\left( x \right)\]:
\[ = \int_{ - 2}^2 {{e^{\cos x}}\sin xdx} + \int_2^3 {2dx} \] ……(i)
Assume that \[g\left( x \right) = {e^{\cos x}}\sin x\]
Now putting x = -x
\[g\left( { - x} \right) = {e^{\cos \left( { - x} \right)}}\sin \left( { - x} \right)\]
\[ \Rightarrow g\left( { - x} \right) = - {e^{\cos x}}\sin x\]
\[ \Rightarrow g\left( { - x} \right) = - g\left( x \right)\]
Therefore \[g\left( x \right)\] is an odd function.
According the definite integral property \[\int\limits_{ - a}^a {f\left( x \right)dx} = \left\{ {\begin{array}{*{20}{c}}0&{{\rm{if f(x) is an odd function}}}\\{2\int_0^a {f\left( x \right)dx} }&{{\rm{if f(x) is an even function}}}\end{array}} \right.\]:
\[\int_{ - 2}^2 {{e^{\cos x}}\sin xdx} = 0\]
Substitute \[\int_{ - 2}^2 {{e^{\cos x}}\sin xdx} = 0\] in equation (i):
\[\int_{ - 2}^2 {{e^{\cos x}}\sin xdx} + \int_2^3 {2dx} \]
\[ = 0 + \int_2^3 {2dx} \]
Integration the second integration:
\[ = 0 + 2\left[ x \right]_2^3\]
\[ = 0 + 2\left[ {3 - 2} \right]\]
\[ = 0 + 2 \cdot 1\]
\[ = 2\]
Option ‘C’ is correct
Note: Students try to solve the integration \[\int_{ - 2}^2 {{e^{\cos x}}\sin xdx} \] by using the substitution method. But it is a bit lengthy process. We can easily solve it by using the property of definite integral.
Formula Used:Definite integral property:
\[\int\limits_{ - a}^a {f\left( x \right)dx} = \left\{ {\begin{array}{*{20}{c}}0&{{\rm{if f(x) is an odd function}}}\\{2\int_0^a {f\left( x \right)dx} }&{{\rm{if f(x) is an even function}}}\end{array}} \right.\]
Complete step by step solution:We know that if \[\left| x \right| \le a\] then \[ - a \le x \le a\].
We can rewrite \[\left| x \right| \le 2\] as \[ - 2 \le x \le 2\].
Now rewrite the given information that is \[f\left( x \right) = \left\{ {\begin{array}{*{20}{c}}{{e^{\cos x}}\sin x,}&{\left| x \right| \le 2}\\{2,}&{{\rm{otherwise}}}\end{array}} \right.\].
\[f\left( x \right) = \left\{ {\begin{array}{*{20}{c}}{{e^{\cos x}}\sin x,}&{ - 2 \le x \le 2}\\{2,}&{{\rm{otherwise}}}\end{array}} \right.\]
It means when \[ - 2 \le x \le 2\], then \[f\left( x \right) = {e^{\cos x}}\sin x\].
And when \[x \notin \left[ { - 2,2} \right]\], then \[f\left( x \right) = 2\]
We will break the integration as a sum of two integrations. The limit of the first integration is -2 to 2 and the second integration is 2 to 3
Now we will the limits of the given integration,
\[\int_{ - 2}^3 {f\left( x \right)dx} \]
\[ = \int_{ - 2}^2 {f\left( x \right)dx} + \int_2^3 {f\left( x \right)dx} \]
Now substitute the value of \[f\left( x \right)\]:
\[ = \int_{ - 2}^2 {{e^{\cos x}}\sin xdx} + \int_2^3 {2dx} \] ……(i)
Assume that \[g\left( x \right) = {e^{\cos x}}\sin x\]
Now putting x = -x
\[g\left( { - x} \right) = {e^{\cos \left( { - x} \right)}}\sin \left( { - x} \right)\]
\[ \Rightarrow g\left( { - x} \right) = - {e^{\cos x}}\sin x\]
\[ \Rightarrow g\left( { - x} \right) = - g\left( x \right)\]
Therefore \[g\left( x \right)\] is an odd function.
According the definite integral property \[\int\limits_{ - a}^a {f\left( x \right)dx} = \left\{ {\begin{array}{*{20}{c}}0&{{\rm{if f(x) is an odd function}}}\\{2\int_0^a {f\left( x \right)dx} }&{{\rm{if f(x) is an even function}}}\end{array}} \right.\]:
\[\int_{ - 2}^2 {{e^{\cos x}}\sin xdx} = 0\]
Substitute \[\int_{ - 2}^2 {{e^{\cos x}}\sin xdx} = 0\] in equation (i):
\[\int_{ - 2}^2 {{e^{\cos x}}\sin xdx} + \int_2^3 {2dx} \]
\[ = 0 + \int_2^3 {2dx} \]
Integration the second integration:
\[ = 0 + 2\left[ x \right]_2^3\]
\[ = 0 + 2\left[ {3 - 2} \right]\]
\[ = 0 + 2 \cdot 1\]
\[ = 2\]
Option ‘C’ is correct
Note: Students try to solve the integration \[\int_{ - 2}^2 {{e^{\cos x}}\sin xdx} \] by using the substitution method. But it is a bit lengthy process. We can easily solve it by using the property of definite integral.
Recently Updated Pages
If tan 1y tan 1x + tan 1left frac2x1 x2 right where x frac1sqrt 3 Then the value of y is

Geometry of Complex Numbers – Topics, Reception, Audience and Related Readings

JEE Main 2021 July 25 Shift 1 Question Paper with Answer Key

JEE Main 2021 July 22 Shift 2 Question Paper with Answer Key

JEE Electricity and Magnetism Important Concepts and Tips for Exam Preparation

JEE Energetics Important Concepts and Tips for Exam Preparation

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Displacement-Time Graph and Velocity-Time Graph for JEE

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation

JoSAA JEE Main & Advanced 2025 Counselling: Registration Dates, Documents, Fees, Seat Allotment & Cut‑offs

NIT Cutoff Percentile for 2025

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

JEE Advanced 2025: Dates, Registration, Syllabus, Eligibility Criteria and More

Degree of Dissociation and Its Formula With Solved Example for JEE

Free Radical Substitution Mechanism of Alkanes for JEE Main 2025

JEE Advanced 2025 Notes
