
If \[\dfrac{2}{{9!}} + \dfrac{2}{{3!7!}} + \dfrac{1}{{5!5!}} = \dfrac{{{2^a}}}{{b!}}\] where \[a,b \in N\] . Then, what is the value of the order pair \[\left( {a,b} \right)\]?
A. \[\left( {9,10} \right)\]
B. \[\left( {10,9} \right)\]
C. \[\left( {7,10} \right)\]
D. \[\left( {10,7} \right)\]
Answer
232.8k+ views
Hint: First, simplify the left-hand side by splitting the terms. Then, rewrite the terms in the form of factorial. After that, solve the left-hand side and rewrite the numerator as the exponent of 2. In the end, compare it with the right-hand side to get the value of the required ordered pair.
Formula Used: \[n! = n \times \left( {n - 1} \right) \times \left( {n - 2} \right) \times .... \times 3 \times 2 \times 1\]
Complete step by step solution: The given equation is \[\dfrac{2}{{9!}} + \dfrac{2}{{3!7!}} + \dfrac{1}{{5!5!}} = \dfrac{{{2^a}}}{{b!}}\] where \[a,b \in N\].
Let’s simplify the left-hand side.
\[\dfrac{1}{{9!}} + \dfrac{1}{{9!}} + \dfrac{1}{{3!7!}} + \dfrac{1}{{3!7!}} + \dfrac{1}{{5!5!}} = \dfrac{{{2^a}}}{{b!}}\]
\[ \Rightarrow \dfrac{1}{{9!}} + \dfrac{1}{{3!7!}} + \dfrac{1}{{5!5!}} + \dfrac{1}{{3!7!}} + \dfrac{1}{{9!}} = \dfrac{{{2^a}}}{{b!}}\]
Multiply and divide the left-hand side by \[10!\].
\[\dfrac{1}{{10!}}\left[ {\dfrac{{10!}}{{1!9!}} + \dfrac{{10!}}{{3!7!}} + \dfrac{{10!}}{{5!5!}} + \dfrac{{10!}}{{7!3!}} + \dfrac{{10!}}{{9!1!}}} \right] = \dfrac{{{2^a}}}{{b!}}\]
Now rewrite the left-hand side by using the factorial formula \[n! = n \times \left( {n - 1} \right) \times \left( {n - 2} \right) \times .... \times 3 \times 2 \times 1\].
\[\dfrac{1}{{10!}}\left[ {\dfrac{{10 \times 9!}}{{1!9!}} + \dfrac{{10 \times 9 \times 8 \times 7!}}{{3!7!}} + \dfrac{{10 \times 9 \times 8 \times 7 \times 6 \times 5!}}{{5!5!}} + \dfrac{{10 \times 9 \times 8 \times 7!}}{{7!3!}} + \dfrac{{10 \times 9!}}{{9!1!}}} \right] = \dfrac{{{2^a}}}{{b!}}\]
\[ \Rightarrow \dfrac{1}{{10!}}\left[ {10 + 120 + 252 + 120 + 10} \right] = \dfrac{{{2^a}}}{{b!}}\]
\[ \Rightarrow \dfrac{1}{{10!}}\left[ {512} \right] = \dfrac{{{2^a}}}{{b!}}\]
\[ \Rightarrow \dfrac{1}{{10!}}\left[ {{2^9}} \right] = \dfrac{{{2^a}}}{{b!}}\]
Now compare both sides.
We get,
\[a = 9\] and \[b = 10\]
Option ‘A’ is correct
Note: The factorial of a number is a product of all whole numbers less than that number up to 1.
Formulas:
\[n! = n\left( {n - 1} \right)\left( {n - 2} \right)....3 \times 2 \times 1\]
\[n! = n\left( {n - 1} \right)!\]
Formula Used: \[n! = n \times \left( {n - 1} \right) \times \left( {n - 2} \right) \times .... \times 3 \times 2 \times 1\]
Complete step by step solution: The given equation is \[\dfrac{2}{{9!}} + \dfrac{2}{{3!7!}} + \dfrac{1}{{5!5!}} = \dfrac{{{2^a}}}{{b!}}\] where \[a,b \in N\].
Let’s simplify the left-hand side.
\[\dfrac{1}{{9!}} + \dfrac{1}{{9!}} + \dfrac{1}{{3!7!}} + \dfrac{1}{{3!7!}} + \dfrac{1}{{5!5!}} = \dfrac{{{2^a}}}{{b!}}\]
\[ \Rightarrow \dfrac{1}{{9!}} + \dfrac{1}{{3!7!}} + \dfrac{1}{{5!5!}} + \dfrac{1}{{3!7!}} + \dfrac{1}{{9!}} = \dfrac{{{2^a}}}{{b!}}\]
Multiply and divide the left-hand side by \[10!\].
\[\dfrac{1}{{10!}}\left[ {\dfrac{{10!}}{{1!9!}} + \dfrac{{10!}}{{3!7!}} + \dfrac{{10!}}{{5!5!}} + \dfrac{{10!}}{{7!3!}} + \dfrac{{10!}}{{9!1!}}} \right] = \dfrac{{{2^a}}}{{b!}}\]
Now rewrite the left-hand side by using the factorial formula \[n! = n \times \left( {n - 1} \right) \times \left( {n - 2} \right) \times .... \times 3 \times 2 \times 1\].
\[\dfrac{1}{{10!}}\left[ {\dfrac{{10 \times 9!}}{{1!9!}} + \dfrac{{10 \times 9 \times 8 \times 7!}}{{3!7!}} + \dfrac{{10 \times 9 \times 8 \times 7 \times 6 \times 5!}}{{5!5!}} + \dfrac{{10 \times 9 \times 8 \times 7!}}{{7!3!}} + \dfrac{{10 \times 9!}}{{9!1!}}} \right] = \dfrac{{{2^a}}}{{b!}}\]
\[ \Rightarrow \dfrac{1}{{10!}}\left[ {10 + 120 + 252 + 120 + 10} \right] = \dfrac{{{2^a}}}{{b!}}\]
\[ \Rightarrow \dfrac{1}{{10!}}\left[ {512} \right] = \dfrac{{{2^a}}}{{b!}}\]
\[ \Rightarrow \dfrac{1}{{10!}}\left[ {{2^9}} \right] = \dfrac{{{2^a}}}{{b!}}\]
Now compare both sides.
We get,
\[a = 9\] and \[b = 10\]
Option ‘A’ is correct
Note: The factorial of a number is a product of all whole numbers less than that number up to 1.
Formulas:
\[n! = n\left( {n - 1} \right)\left( {n - 2} \right)....3 \times 2 \times 1\]
\[n! = n\left( {n - 1} \right)!\]
Recently Updated Pages
Geometry of Complex Numbers Explained

JEE General Topics in Chemistry Important Concepts and Tips

JEE Extractive Metallurgy Important Concepts and Tips for Exam Preparation

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

JEE Atomic Structure and Chemical Bonding important Concepts and Tips

Electricity and Magnetism Explained: Key Concepts & Applications

Trending doubts
JEE Main 2026: Session 2 Registration Open, City Intimation Slip, Exam Dates, Syllabus & Eligibility

JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

JEE Main Marking Scheme 2026- Paper-Wise Marks Distribution and Negative Marking Details

Understanding the Angle of Deviation in a Prism

Hybridisation in Chemistry – Concept, Types & Applications

How to Convert a Galvanometer into an Ammeter or Voltmeter

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

NCERT Solutions For Class 11 Maths Chapter 12 Limits and Derivatives (2025-26)

NCERT Solutions For Class 11 Maths Chapter 10 Conic Sections (2025-26)

Understanding the Electric Field of a Uniformly Charged Ring

Derivation of Equation of Trajectory Explained for Students

Understanding Electromagnetic Waves and Their Importance

