
If $\dfrac{1}{a}$ , $\dfrac{1}{H}$, $\dfrac{1}{b}$ are in AP, then $\dfrac{{\left( {H + a} \right)}}{{\left( {H - a} \right)}} + \dfrac{{\left( {H + b} \right)}}{{\left( {H - b} \right)}} = $
A) $2$
B) $4$
C) $0$
D) $1$
Answer
216.3k+ views
Hint: In the given question we use the concept of Arithmetic Progression. Here, we will use the common difference formula to find the terms of the final expressions that are to be found. To do so equate the common difference between ${1^{st}}$ and ${2^{nd}}$ terms with ${2^{nd}}$ and ${3^{rd}}$ terms. Then add and subtract $a$ and $b$ from both the sides of equation one by one to get the values of $\left( {H + a} \right)$ , $\left( {H - a} \right)$, $\left( {H + b} \right)$ and $\left( {H - b} \right)$ respectively and substitute in the final expression to get the answer.
Complete step by step Solution:
Given AP: $\dfrac{1}{a}$ , $\dfrac{1}{H}$, $\dfrac{1}{b}$
Common difference: $\dfrac{1}{H} - \dfrac{1}{a} = \dfrac{1}{b} - \dfrac{1}{H}$
$\dfrac{2}{H} = \dfrac{1}{a} + \dfrac{1}{b}$
Taking LCM on the right side of the equation, we get
$\dfrac{2}{H} = \dfrac{{a + b}}{{ab}}$
Inverting the equations, we get
$\dfrac{H}{2} = \dfrac{{ab}}{{a + b}}$
$H = \dfrac{{2ab}}{{a + b}}$ ...(1)
Adding $a$ to both the sides of the equation (1), we get
$H + a = \dfrac{{2ab}}{{a + b}} + a$
$H + a = \dfrac{{2ab + a\left( {a + b} \right)}}{{a + b}}$
Taking $a$ common from the numerator, we get
$H + a = \dfrac{{a(a + 3b)}}{{a + b}}$ ...(2)
Subtracting $a$ from both sides of the equation (1), we get
$H - a = \dfrac{{2ab}}{{a + b}} - a$
$H - a = \dfrac{{2ab - a\left( {a + b} \right)}}{{a + b}}$
Again taking $a$ common from the numerator, we get
$H - a = \dfrac{{a(b - a)}}{{a + b}}$ ...(3)
Similarly, by adding $b$ to both sides of the equation (1), we get
$H + b = \dfrac{{2ab}}{{a + b}} + b$
$H + b = \dfrac{{2ab + b\left( {a + b} \right)}}{{a + b}}$
Taking $b$ common from the numerator, we get
$H + b = \dfrac{{b(3a + b)}}{{a + b}}$ ...(4)
Now subtracting $b$ from both sides of the equation (1), we get
$H - b = \dfrac{{2ab}}{{a + b}} - b$
$H - b = \dfrac{{2ab - b\left( {a + b} \right)}}{{a + b}}$
Again taking $a$ common from the numerator, we get
$H - b = \dfrac{{b(a - b)}}{{a + b}}$ ...(5)
Now we substitute equations (2), (3), (4), and (5) in equation (1), and we get
$\dfrac{{\left( {H + a} \right)}}{{\left( {H - a} \right)}} + \dfrac{{\left( {H + b} \right)}}{{\left( {H - b} \right)}} = \dfrac{{\dfrac{{a(a + 3b)}}{{a + b}}}}{{\dfrac{{a(b - a)}}{{a + b}}}} + \dfrac{{\dfrac{{b(3a + b)}}{{a + b}}}}{{\dfrac{{b(a - b)}}{{a + b}}}}$
$\dfrac{{\left( {H + a} \right)}}{{\left( {H - a} \right)}} + \dfrac{{\left( {H + b} \right)}}{{\left( {H - b} \right)}} = \dfrac{{(a + 3b)}}{{(b - a)}} + \dfrac{{(3a + b)}}{{(a - b)}}$
Taking a negative sign out from the denominator of the second term, we get
$\dfrac{{\left( {H + a} \right)}}{{\left( {H - a} \right)}} + \dfrac{{\left( {H + b} \right)}}{{\left( {H - b} \right)}} = \dfrac{{(a + 3b)}}{{(b - a)}} - \dfrac{{(3a + b)}}{{(b - a)}}$
$\dfrac{{\left( {H + a} \right)}}{{\left( {H - a} \right)}} + \dfrac{{\left( {H + b} \right)}}{{\left( {H - b} \right)}} = \dfrac{{a + 3b - 3a - b}}{{(b - a)}}$
Solving further, we get
$\dfrac{{\left( {H + a} \right)}}{{\left( {H - a} \right)}} + \dfrac{{\left( {H + b} \right)}}{{\left( {H - b} \right)}} = \dfrac{{2b - 2a}}{{(b - a)}}$
Taking 2 commons from the numerator of the right-hand side of the equation, we get
$\dfrac{{\left( {H + a} \right)}}{{\left( {H - a} \right)}} + \dfrac{{\left( {H + b} \right)}}{{\left( {H - b} \right)}} = \dfrac{{2(b - a)}}{{(b - a)}}$
Thus we get, $\dfrac{{\left( {H + a} \right)}}{{\left( {H - a} \right)}} + \dfrac{{\left( {H + b} \right)}}{{\left( {H - b} \right)}} = 2$
Therefore, the correct option is A.
Note:More such questions can be given in Geometric Progression too where the formula of common difference is not the same as that of Arithmetic Progression. Common Difference for Geometric Progression (GP) $x,y,z$ is $\dfrac{y}{x}$ or $\dfrac{z}{y}$ i.e., $\dfrac{{{n^{th}}term}}{{{{(n + 1)}^{th}}term}}$ .
Complete step by step Solution:
Given AP: $\dfrac{1}{a}$ , $\dfrac{1}{H}$, $\dfrac{1}{b}$
Common difference: $\dfrac{1}{H} - \dfrac{1}{a} = \dfrac{1}{b} - \dfrac{1}{H}$
$\dfrac{2}{H} = \dfrac{1}{a} + \dfrac{1}{b}$
Taking LCM on the right side of the equation, we get
$\dfrac{2}{H} = \dfrac{{a + b}}{{ab}}$
Inverting the equations, we get
$\dfrac{H}{2} = \dfrac{{ab}}{{a + b}}$
$H = \dfrac{{2ab}}{{a + b}}$ ...(1)
Adding $a$ to both the sides of the equation (1), we get
$H + a = \dfrac{{2ab}}{{a + b}} + a$
$H + a = \dfrac{{2ab + a\left( {a + b} \right)}}{{a + b}}$
Taking $a$ common from the numerator, we get
$H + a = \dfrac{{a(a + 3b)}}{{a + b}}$ ...(2)
Subtracting $a$ from both sides of the equation (1), we get
$H - a = \dfrac{{2ab}}{{a + b}} - a$
$H - a = \dfrac{{2ab - a\left( {a + b} \right)}}{{a + b}}$
Again taking $a$ common from the numerator, we get
$H - a = \dfrac{{a(b - a)}}{{a + b}}$ ...(3)
Similarly, by adding $b$ to both sides of the equation (1), we get
$H + b = \dfrac{{2ab}}{{a + b}} + b$
$H + b = \dfrac{{2ab + b\left( {a + b} \right)}}{{a + b}}$
Taking $b$ common from the numerator, we get
$H + b = \dfrac{{b(3a + b)}}{{a + b}}$ ...(4)
Now subtracting $b$ from both sides of the equation (1), we get
$H - b = \dfrac{{2ab}}{{a + b}} - b$
$H - b = \dfrac{{2ab - b\left( {a + b} \right)}}{{a + b}}$
Again taking $a$ common from the numerator, we get
$H - b = \dfrac{{b(a - b)}}{{a + b}}$ ...(5)
Now we substitute equations (2), (3), (4), and (5) in equation (1), and we get
$\dfrac{{\left( {H + a} \right)}}{{\left( {H - a} \right)}} + \dfrac{{\left( {H + b} \right)}}{{\left( {H - b} \right)}} = \dfrac{{\dfrac{{a(a + 3b)}}{{a + b}}}}{{\dfrac{{a(b - a)}}{{a + b}}}} + \dfrac{{\dfrac{{b(3a + b)}}{{a + b}}}}{{\dfrac{{b(a - b)}}{{a + b}}}}$
$\dfrac{{\left( {H + a} \right)}}{{\left( {H - a} \right)}} + \dfrac{{\left( {H + b} \right)}}{{\left( {H - b} \right)}} = \dfrac{{(a + 3b)}}{{(b - a)}} + \dfrac{{(3a + b)}}{{(a - b)}}$
Taking a negative sign out from the denominator of the second term, we get
$\dfrac{{\left( {H + a} \right)}}{{\left( {H - a} \right)}} + \dfrac{{\left( {H + b} \right)}}{{\left( {H - b} \right)}} = \dfrac{{(a + 3b)}}{{(b - a)}} - \dfrac{{(3a + b)}}{{(b - a)}}$
$\dfrac{{\left( {H + a} \right)}}{{\left( {H - a} \right)}} + \dfrac{{\left( {H + b} \right)}}{{\left( {H - b} \right)}} = \dfrac{{a + 3b - 3a - b}}{{(b - a)}}$
Solving further, we get
$\dfrac{{\left( {H + a} \right)}}{{\left( {H - a} \right)}} + \dfrac{{\left( {H + b} \right)}}{{\left( {H - b} \right)}} = \dfrac{{2b - 2a}}{{(b - a)}}$
Taking 2 commons from the numerator of the right-hand side of the equation, we get
$\dfrac{{\left( {H + a} \right)}}{{\left( {H - a} \right)}} + \dfrac{{\left( {H + b} \right)}}{{\left( {H - b} \right)}} = \dfrac{{2(b - a)}}{{(b - a)}}$
Thus we get, $\dfrac{{\left( {H + a} \right)}}{{\left( {H - a} \right)}} + \dfrac{{\left( {H + b} \right)}}{{\left( {H - b} \right)}} = 2$
Therefore, the correct option is A.
Note:More such questions can be given in Geometric Progression too where the formula of common difference is not the same as that of Arithmetic Progression. Common Difference for Geometric Progression (GP) $x,y,z$ is $\dfrac{y}{x}$ or $\dfrac{z}{y}$ i.e., $\dfrac{{{n^{th}}term}}{{{{(n + 1)}^{th}}term}}$ .
Recently Updated Pages
JEE Atomic Structure and Chemical Bonding important Concepts and Tips

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

Electricity and Magnetism Explained: Key Concepts & Applications

Chemical Properties of Hydrogen - Important Concepts for JEE Exam Preparation

JEE Energetics Important Concepts and Tips for Exam Preparation

JEE Isolation, Preparation and Properties of Non-metals Important Concepts and Tips for Exam Preparation

Trending doubts
Understanding Electromagnetic Waves and Their Importance

Geostationary and Geosynchronous Satellites Explained

Inertial and Non-Inertial Frame of Reference Explained

Clemmensen and Wolff Kishner Reductions Explained for JEE & NEET

JEE Main 2023 January 29th Shift 2 Physics Question Paper with Answer Keys and Solutions

Current Loop as a Magnetic Dipole: Concept, Derivation, and Examples

Other Pages
NCERT Solutions for Class 11 Maths Chapter Chapter 4 Complex Numbers And Quadratic Equations

JEE Main Correction Window 2026 Session 1 Dates Announced - Edit Form Details, Dates and Link

Alpha, Beta, and Gamma Decay Explained for JEE & NEET

Devuthani Ekadashi 2025: Correct Date, Shubh Muhurat, Parana Time & Puja Vidhi

Quadratic Equation Questions with Solutions & PDF Practice Sets

Photosynthesis explained for students

