
If $\dfrac{1}{a}$ , $\dfrac{1}{H}$, $\dfrac{1}{b}$ are in AP, then $\dfrac{{\left( {H + a} \right)}}{{\left( {H - a} \right)}} + \dfrac{{\left( {H + b} \right)}}{{\left( {H - b} \right)}} = $
A) $2$
B) $4$
C) $0$
D) $1$
Answer
161.1k+ views
Hint: In the given question we use the concept of Arithmetic Progression. Here, we will use the common difference formula to find the terms of the final expressions that are to be found. To do so equate the common difference between ${1^{st}}$ and ${2^{nd}}$ terms with ${2^{nd}}$ and ${3^{rd}}$ terms. Then add and subtract $a$ and $b$ from both the sides of equation one by one to get the values of $\left( {H + a} \right)$ , $\left( {H - a} \right)$, $\left( {H + b} \right)$ and $\left( {H - b} \right)$ respectively and substitute in the final expression to get the answer.
Complete step by step Solution:
Given AP: $\dfrac{1}{a}$ , $\dfrac{1}{H}$, $\dfrac{1}{b}$
Common difference: $\dfrac{1}{H} - \dfrac{1}{a} = \dfrac{1}{b} - \dfrac{1}{H}$
$\dfrac{2}{H} = \dfrac{1}{a} + \dfrac{1}{b}$
Taking LCM on the right side of the equation, we get
$\dfrac{2}{H} = \dfrac{{a + b}}{{ab}}$
Inverting the equations, we get
$\dfrac{H}{2} = \dfrac{{ab}}{{a + b}}$
$H = \dfrac{{2ab}}{{a + b}}$ ...(1)
Adding $a$ to both the sides of the equation (1), we get
$H + a = \dfrac{{2ab}}{{a + b}} + a$
$H + a = \dfrac{{2ab + a\left( {a + b} \right)}}{{a + b}}$
Taking $a$ common from the numerator, we get
$H + a = \dfrac{{a(a + 3b)}}{{a + b}}$ ...(2)
Subtracting $a$ from both sides of the equation (1), we get
$H - a = \dfrac{{2ab}}{{a + b}} - a$
$H - a = \dfrac{{2ab - a\left( {a + b} \right)}}{{a + b}}$
Again taking $a$ common from the numerator, we get
$H - a = \dfrac{{a(b - a)}}{{a + b}}$ ...(3)
Similarly, by adding $b$ to both sides of the equation (1), we get
$H + b = \dfrac{{2ab}}{{a + b}} + b$
$H + b = \dfrac{{2ab + b\left( {a + b} \right)}}{{a + b}}$
Taking $b$ common from the numerator, we get
$H + b = \dfrac{{b(3a + b)}}{{a + b}}$ ...(4)
Now subtracting $b$ from both sides of the equation (1), we get
$H - b = \dfrac{{2ab}}{{a + b}} - b$
$H - b = \dfrac{{2ab - b\left( {a + b} \right)}}{{a + b}}$
Again taking $a$ common from the numerator, we get
$H - b = \dfrac{{b(a - b)}}{{a + b}}$ ...(5)
Now we substitute equations (2), (3), (4), and (5) in equation (1), and we get
$\dfrac{{\left( {H + a} \right)}}{{\left( {H - a} \right)}} + \dfrac{{\left( {H + b} \right)}}{{\left( {H - b} \right)}} = \dfrac{{\dfrac{{a(a + 3b)}}{{a + b}}}}{{\dfrac{{a(b - a)}}{{a + b}}}} + \dfrac{{\dfrac{{b(3a + b)}}{{a + b}}}}{{\dfrac{{b(a - b)}}{{a + b}}}}$
$\dfrac{{\left( {H + a} \right)}}{{\left( {H - a} \right)}} + \dfrac{{\left( {H + b} \right)}}{{\left( {H - b} \right)}} = \dfrac{{(a + 3b)}}{{(b - a)}} + \dfrac{{(3a + b)}}{{(a - b)}}$
Taking a negative sign out from the denominator of the second term, we get
$\dfrac{{\left( {H + a} \right)}}{{\left( {H - a} \right)}} + \dfrac{{\left( {H + b} \right)}}{{\left( {H - b} \right)}} = \dfrac{{(a + 3b)}}{{(b - a)}} - \dfrac{{(3a + b)}}{{(b - a)}}$
$\dfrac{{\left( {H + a} \right)}}{{\left( {H - a} \right)}} + \dfrac{{\left( {H + b} \right)}}{{\left( {H - b} \right)}} = \dfrac{{a + 3b - 3a - b}}{{(b - a)}}$
Solving further, we get
$\dfrac{{\left( {H + a} \right)}}{{\left( {H - a} \right)}} + \dfrac{{\left( {H + b} \right)}}{{\left( {H - b} \right)}} = \dfrac{{2b - 2a}}{{(b - a)}}$
Taking 2 commons from the numerator of the right-hand side of the equation, we get
$\dfrac{{\left( {H + a} \right)}}{{\left( {H - a} \right)}} + \dfrac{{\left( {H + b} \right)}}{{\left( {H - b} \right)}} = \dfrac{{2(b - a)}}{{(b - a)}}$
Thus we get, $\dfrac{{\left( {H + a} \right)}}{{\left( {H - a} \right)}} + \dfrac{{\left( {H + b} \right)}}{{\left( {H - b} \right)}} = 2$
Therefore, the correct option is A.
Note:More such questions can be given in Geometric Progression too where the formula of common difference is not the same as that of Arithmetic Progression. Common Difference for Geometric Progression (GP) $x,y,z$ is $\dfrac{y}{x}$ or $\dfrac{z}{y}$ i.e., $\dfrac{{{n^{th}}term}}{{{{(n + 1)}^{th}}term}}$ .
Complete step by step Solution:
Given AP: $\dfrac{1}{a}$ , $\dfrac{1}{H}$, $\dfrac{1}{b}$
Common difference: $\dfrac{1}{H} - \dfrac{1}{a} = \dfrac{1}{b} - \dfrac{1}{H}$
$\dfrac{2}{H} = \dfrac{1}{a} + \dfrac{1}{b}$
Taking LCM on the right side of the equation, we get
$\dfrac{2}{H} = \dfrac{{a + b}}{{ab}}$
Inverting the equations, we get
$\dfrac{H}{2} = \dfrac{{ab}}{{a + b}}$
$H = \dfrac{{2ab}}{{a + b}}$ ...(1)
Adding $a$ to both the sides of the equation (1), we get
$H + a = \dfrac{{2ab}}{{a + b}} + a$
$H + a = \dfrac{{2ab + a\left( {a + b} \right)}}{{a + b}}$
Taking $a$ common from the numerator, we get
$H + a = \dfrac{{a(a + 3b)}}{{a + b}}$ ...(2)
Subtracting $a$ from both sides of the equation (1), we get
$H - a = \dfrac{{2ab}}{{a + b}} - a$
$H - a = \dfrac{{2ab - a\left( {a + b} \right)}}{{a + b}}$
Again taking $a$ common from the numerator, we get
$H - a = \dfrac{{a(b - a)}}{{a + b}}$ ...(3)
Similarly, by adding $b$ to both sides of the equation (1), we get
$H + b = \dfrac{{2ab}}{{a + b}} + b$
$H + b = \dfrac{{2ab + b\left( {a + b} \right)}}{{a + b}}$
Taking $b$ common from the numerator, we get
$H + b = \dfrac{{b(3a + b)}}{{a + b}}$ ...(4)
Now subtracting $b$ from both sides of the equation (1), we get
$H - b = \dfrac{{2ab}}{{a + b}} - b$
$H - b = \dfrac{{2ab - b\left( {a + b} \right)}}{{a + b}}$
Again taking $a$ common from the numerator, we get
$H - b = \dfrac{{b(a - b)}}{{a + b}}$ ...(5)
Now we substitute equations (2), (3), (4), and (5) in equation (1), and we get
$\dfrac{{\left( {H + a} \right)}}{{\left( {H - a} \right)}} + \dfrac{{\left( {H + b} \right)}}{{\left( {H - b} \right)}} = \dfrac{{\dfrac{{a(a + 3b)}}{{a + b}}}}{{\dfrac{{a(b - a)}}{{a + b}}}} + \dfrac{{\dfrac{{b(3a + b)}}{{a + b}}}}{{\dfrac{{b(a - b)}}{{a + b}}}}$
$\dfrac{{\left( {H + a} \right)}}{{\left( {H - a} \right)}} + \dfrac{{\left( {H + b} \right)}}{{\left( {H - b} \right)}} = \dfrac{{(a + 3b)}}{{(b - a)}} + \dfrac{{(3a + b)}}{{(a - b)}}$
Taking a negative sign out from the denominator of the second term, we get
$\dfrac{{\left( {H + a} \right)}}{{\left( {H - a} \right)}} + \dfrac{{\left( {H + b} \right)}}{{\left( {H - b} \right)}} = \dfrac{{(a + 3b)}}{{(b - a)}} - \dfrac{{(3a + b)}}{{(b - a)}}$
$\dfrac{{\left( {H + a} \right)}}{{\left( {H - a} \right)}} + \dfrac{{\left( {H + b} \right)}}{{\left( {H - b} \right)}} = \dfrac{{a + 3b - 3a - b}}{{(b - a)}}$
Solving further, we get
$\dfrac{{\left( {H + a} \right)}}{{\left( {H - a} \right)}} + \dfrac{{\left( {H + b} \right)}}{{\left( {H - b} \right)}} = \dfrac{{2b - 2a}}{{(b - a)}}$
Taking 2 commons from the numerator of the right-hand side of the equation, we get
$\dfrac{{\left( {H + a} \right)}}{{\left( {H - a} \right)}} + \dfrac{{\left( {H + b} \right)}}{{\left( {H - b} \right)}} = \dfrac{{2(b - a)}}{{(b - a)}}$
Thus we get, $\dfrac{{\left( {H + a} \right)}}{{\left( {H - a} \right)}} + \dfrac{{\left( {H + b} \right)}}{{\left( {H - b} \right)}} = 2$
Therefore, the correct option is A.
Note:More such questions can be given in Geometric Progression too where the formula of common difference is not the same as that of Arithmetic Progression. Common Difference for Geometric Progression (GP) $x,y,z$ is $\dfrac{y}{x}$ or $\dfrac{z}{y}$ i.e., $\dfrac{{{n^{th}}term}}{{{{(n + 1)}^{th}}term}}$ .
Recently Updated Pages
If there are 25 railway stations on a railway line class 11 maths JEE_Main

Minimum area of the circle which touches the parabolas class 11 maths JEE_Main

Which of the following is the empty set A x x is a class 11 maths JEE_Main

The number of ways of selecting two squares on chessboard class 11 maths JEE_Main

Find the points common to the hyperbola 25x2 9y2 2-class-11-maths-JEE_Main

A box contains 6 balls which may be all of different class 11 maths JEE_Main

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation

Displacement-Time Graph and Velocity-Time Graph for JEE

Degree of Dissociation and Its Formula With Solved Example for JEE

Learn About Angle Of Deviation In Prism: JEE Main Physics 2025

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

JEE Advanced 2025: Dates, Registration, Syllabus, Eligibility Criteria and More

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

NCERT Solutions for Class 11 Maths Chapter 4 Complex Numbers and Quadratic Equations

Free Radical Substitution Mechanism of Alkanes for JEE Main 2025

NCERT Solutions for Class 11 Maths In Hindi Chapter 1 Sets
