
If \[\cos \theta =\cos \alpha .\cos \beta \], then \[\tan \left( \dfrac{\theta +\alpha }{2} \right)\tan \left( \dfrac{\theta -\alpha }{2} \right)\] is equal to
a) \[{{\tan }^{2}}\left( \dfrac{\alpha }{2} \right)\]
b) \[{{\tan }^{2}}\left( \dfrac{\beta }{2} \right)\]
c) \[{{\tan }^{2}}\left( \dfrac{\theta }{2} \right)\]
d) \[{{\cot }^{2}}\left( \dfrac{\beta }{2} \right)\]
Answer
162.9k+ views
Hint: By using the \[\cos \theta =\cos \alpha .\cos \beta \], we need to find the value of \[\tan \left( \dfrac{\theta +\alpha }{2} \right)\tan \left( \dfrac{\theta -\alpha }{2} \right)\]. We know that tangent is the ratio of sine to cosine function by applying this and using some trigonometric formula we can find the value.
Formula used:
\[\cos A-\cos B=2\sin \left( \dfrac{A+B}{2} \right)\sin \left( \dfrac{B-A}{2} \right)\]
\[\cos A+\cos B=2\cos \left( \dfrac{A+B}{2} \right)\cos \left( \dfrac{A-B}{2} \right)\]
\[1-\cos A=2{{\sin }^{2}}\left( \dfrac{A}{2} \right)\]
\[1+\cos A=2{{\cos }^{2}}\left( \dfrac{A}{2} \right)\]
Step by step solution:
Given, \[\cos \theta =\cos \alpha .\cos \beta \,\,\,\,--(1)\]
Now, we have \[\tan \left( \dfrac{\theta +\alpha }{2} \right)\tan \left( \dfrac{\theta -\alpha }{2} \right)\], by definition we know that tangent is the ratio of sine to cosine.
\[\Rightarrow \tan \left( \dfrac{\theta +\alpha }{2} \right)\tan \left( \dfrac{\theta -\alpha }{2} \right)=\dfrac{\sin \left( \dfrac{\theta +\alpha }{2} \right)}{\cos \left( \dfrac{\theta +\alpha }{2} \right)}\dfrac{\sin \left( \dfrac{\theta -\alpha }{2} \right)}{\cos \left( \dfrac{\theta -\alpha }{2} \right)}\]
Multiplying 2 and dividing 2 on RHS,
\[=\dfrac{2\sin \left( \dfrac{\theta +\alpha }{2} \right)}{2\cos \left( \dfrac{\theta +\alpha }{2} \right)}\dfrac{\sin \left( \dfrac{\theta -\alpha }{2} \right)}{\cos \left( \dfrac{\theta -\alpha }{2} \right)}\]
We know that \[\cos \alpha -\cos \theta =2\sin \left( \dfrac{\theta +\alpha }{2} \right)\sin \left( \dfrac{\theta -\alpha }{2} \right)\] and \[\cos \alpha +\cos \theta =2\cos \left( \dfrac{\theta +\alpha }{2} \right)\cos \left( \dfrac{\theta -\alpha }{2} \right)\], using this we have,
\[=\dfrac{\cos \alpha -\cos \theta }{\cos \alpha +\cos \theta }\]
But from equation 1 we have \[\cos \theta =\cos \alpha .\cos \beta \],
\[=\dfrac{\cos \alpha -\cos \alpha \cos \beta }{\cos \alpha +\cos \alpha \cos \beta }\]
Taking \[\cos \alpha \] common we have
\[=\dfrac{\cos \alpha \left( 1-\cos \beta \right)}{\cos \alpha \left( 1+\cos \beta \right)}\]
\[=\dfrac{1-\cos \beta }{1+\cos \beta }\]
\[=\dfrac{2{{\sin }^{2}}\left( \dfrac{\beta }{2} \right)}{2{{\cos }^{2}}\left( \dfrac{\beta }{2} \right)}\]
\[={{\tan }^{2}}\left( \dfrac{\beta }{2} \right)\]
Hence, \[\tan \left( \dfrac{\theta +\alpha }{2} \right)\tan \left( \dfrac{\theta -\alpha }{2} \right)={{\tan }^{2}}\left( \dfrac{\beta }{2} \right)\].
Hence, option (b) is correct.
Note: Trigonometric identities and ratios are the concept that is used to illustrate the given problem. Trigonometric functions, including variables and constants, are all those trigonometric identities. The replacement method using trigonometric functions is a typical approach used to solve this issue.
Formula used:
\[\cos A-\cos B=2\sin \left( \dfrac{A+B}{2} \right)\sin \left( \dfrac{B-A}{2} \right)\]
\[\cos A+\cos B=2\cos \left( \dfrac{A+B}{2} \right)\cos \left( \dfrac{A-B}{2} \right)\]
\[1-\cos A=2{{\sin }^{2}}\left( \dfrac{A}{2} \right)\]
\[1+\cos A=2{{\cos }^{2}}\left( \dfrac{A}{2} \right)\]
Step by step solution:
Given, \[\cos \theta =\cos \alpha .\cos \beta \,\,\,\,--(1)\]
Now, we have \[\tan \left( \dfrac{\theta +\alpha }{2} \right)\tan \left( \dfrac{\theta -\alpha }{2} \right)\], by definition we know that tangent is the ratio of sine to cosine.
\[\Rightarrow \tan \left( \dfrac{\theta +\alpha }{2} \right)\tan \left( \dfrac{\theta -\alpha }{2} \right)=\dfrac{\sin \left( \dfrac{\theta +\alpha }{2} \right)}{\cos \left( \dfrac{\theta +\alpha }{2} \right)}\dfrac{\sin \left( \dfrac{\theta -\alpha }{2} \right)}{\cos \left( \dfrac{\theta -\alpha }{2} \right)}\]
Multiplying 2 and dividing 2 on RHS,
\[=\dfrac{2\sin \left( \dfrac{\theta +\alpha }{2} \right)}{2\cos \left( \dfrac{\theta +\alpha }{2} \right)}\dfrac{\sin \left( \dfrac{\theta -\alpha }{2} \right)}{\cos \left( \dfrac{\theta -\alpha }{2} \right)}\]
We know that \[\cos \alpha -\cos \theta =2\sin \left( \dfrac{\theta +\alpha }{2} \right)\sin \left( \dfrac{\theta -\alpha }{2} \right)\] and \[\cos \alpha +\cos \theta =2\cos \left( \dfrac{\theta +\alpha }{2} \right)\cos \left( \dfrac{\theta -\alpha }{2} \right)\], using this we have,
\[=\dfrac{\cos \alpha -\cos \theta }{\cos \alpha +\cos \theta }\]
But from equation 1 we have \[\cos \theta =\cos \alpha .\cos \beta \],
\[=\dfrac{\cos \alpha -\cos \alpha \cos \beta }{\cos \alpha +\cos \alpha \cos \beta }\]
Taking \[\cos \alpha \] common we have
\[=\dfrac{\cos \alpha \left( 1-\cos \beta \right)}{\cos \alpha \left( 1+\cos \beta \right)}\]
\[=\dfrac{1-\cos \beta }{1+\cos \beta }\]
\[=\dfrac{2{{\sin }^{2}}\left( \dfrac{\beta }{2} \right)}{2{{\cos }^{2}}\left( \dfrac{\beta }{2} \right)}\]
\[={{\tan }^{2}}\left( \dfrac{\beta }{2} \right)\]
Hence, \[\tan \left( \dfrac{\theta +\alpha }{2} \right)\tan \left( \dfrac{\theta -\alpha }{2} \right)={{\tan }^{2}}\left( \dfrac{\beta }{2} \right)\].
Hence, option (b) is correct.
Note: Trigonometric identities and ratios are the concept that is used to illustrate the given problem. Trigonometric functions, including variables and constants, are all those trigonometric identities. The replacement method using trigonometric functions is a typical approach used to solve this issue.
Recently Updated Pages
If there are 25 railway stations on a railway line class 11 maths JEE_Main

Minimum area of the circle which touches the parabolas class 11 maths JEE_Main

Which of the following is the empty set A x x is a class 11 maths JEE_Main

The number of ways of selecting two squares on chessboard class 11 maths JEE_Main

Find the points common to the hyperbola 25x2 9y2 2-class-11-maths-JEE_Main

A box contains 6 balls which may be all of different class 11 maths JEE_Main

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Displacement-Time Graph and Velocity-Time Graph for JEE

Degree of Dissociation and Its Formula With Solved Example for JEE

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation

JoSAA JEE Main & Advanced 2025 Counselling: Registration Dates, Documents, Fees, Seat Allotment & Cut‑offs

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

NCERT Solutions for Class 11 Maths Chapter 4 Complex Numbers and Quadratic Equations

NCERT Solutions for Class 11 Maths Chapter 6 Permutations and Combinations

NCERT Solutions for Class 11 Maths In Hindi Chapter 1 Sets

JEE Advanced 2025: Dates, Registration, Syllabus, Eligibility Criteria and More
