
If \[\cos \theta =\cos \alpha .\cos \beta \], then \[\tan \left( \dfrac{\theta +\alpha }{2} \right)\tan \left( \dfrac{\theta -\alpha }{2} \right)\] is equal to
a) \[{{\tan }^{2}}\left( \dfrac{\alpha }{2} \right)\]
b) \[{{\tan }^{2}}\left( \dfrac{\beta }{2} \right)\]
c) \[{{\tan }^{2}}\left( \dfrac{\theta }{2} \right)\]
d) \[{{\cot }^{2}}\left( \dfrac{\beta }{2} \right)\]
Answer
219.9k+ views
Hint: By using the \[\cos \theta =\cos \alpha .\cos \beta \], we need to find the value of \[\tan \left( \dfrac{\theta +\alpha }{2} \right)\tan \left( \dfrac{\theta -\alpha }{2} \right)\]. We know that tangent is the ratio of sine to cosine function by applying this and using some trigonometric formula we can find the value.
Formula used:
\[\cos A-\cos B=2\sin \left( \dfrac{A+B}{2} \right)\sin \left( \dfrac{B-A}{2} \right)\]
\[\cos A+\cos B=2\cos \left( \dfrac{A+B}{2} \right)\cos \left( \dfrac{A-B}{2} \right)\]
\[1-\cos A=2{{\sin }^{2}}\left( \dfrac{A}{2} \right)\]
\[1+\cos A=2{{\cos }^{2}}\left( \dfrac{A}{2} \right)\]
Step by step solution:
Given, \[\cos \theta =\cos \alpha .\cos \beta \,\,\,\,--(1)\]
Now, we have \[\tan \left( \dfrac{\theta +\alpha }{2} \right)\tan \left( \dfrac{\theta -\alpha }{2} \right)\], by definition we know that tangent is the ratio of sine to cosine.
\[\Rightarrow \tan \left( \dfrac{\theta +\alpha }{2} \right)\tan \left( \dfrac{\theta -\alpha }{2} \right)=\dfrac{\sin \left( \dfrac{\theta +\alpha }{2} \right)}{\cos \left( \dfrac{\theta +\alpha }{2} \right)}\dfrac{\sin \left( \dfrac{\theta -\alpha }{2} \right)}{\cos \left( \dfrac{\theta -\alpha }{2} \right)}\]
Multiplying 2 and dividing 2 on RHS,
\[=\dfrac{2\sin \left( \dfrac{\theta +\alpha }{2} \right)}{2\cos \left( \dfrac{\theta +\alpha }{2} \right)}\dfrac{\sin \left( \dfrac{\theta -\alpha }{2} \right)}{\cos \left( \dfrac{\theta -\alpha }{2} \right)}\]
We know that \[\cos \alpha -\cos \theta =2\sin \left( \dfrac{\theta +\alpha }{2} \right)\sin \left( \dfrac{\theta -\alpha }{2} \right)\] and \[\cos \alpha +\cos \theta =2\cos \left( \dfrac{\theta +\alpha }{2} \right)\cos \left( \dfrac{\theta -\alpha }{2} \right)\], using this we have,
\[=\dfrac{\cos \alpha -\cos \theta }{\cos \alpha +\cos \theta }\]
But from equation 1 we have \[\cos \theta =\cos \alpha .\cos \beta \],
\[=\dfrac{\cos \alpha -\cos \alpha \cos \beta }{\cos \alpha +\cos \alpha \cos \beta }\]
Taking \[\cos \alpha \] common we have
\[=\dfrac{\cos \alpha \left( 1-\cos \beta \right)}{\cos \alpha \left( 1+\cos \beta \right)}\]
\[=\dfrac{1-\cos \beta }{1+\cos \beta }\]
\[=\dfrac{2{{\sin }^{2}}\left( \dfrac{\beta }{2} \right)}{2{{\cos }^{2}}\left( \dfrac{\beta }{2} \right)}\]
\[={{\tan }^{2}}\left( \dfrac{\beta }{2} \right)\]
Hence, \[\tan \left( \dfrac{\theta +\alpha }{2} \right)\tan \left( \dfrac{\theta -\alpha }{2} \right)={{\tan }^{2}}\left( \dfrac{\beta }{2} \right)\].
Hence, option (b) is correct.
Note: Trigonometric identities and ratios are the concept that is used to illustrate the given problem. Trigonometric functions, including variables and constants, are all those trigonometric identities. The replacement method using trigonometric functions is a typical approach used to solve this issue.
Formula used:
\[\cos A-\cos B=2\sin \left( \dfrac{A+B}{2} \right)\sin \left( \dfrac{B-A}{2} \right)\]
\[\cos A+\cos B=2\cos \left( \dfrac{A+B}{2} \right)\cos \left( \dfrac{A-B}{2} \right)\]
\[1-\cos A=2{{\sin }^{2}}\left( \dfrac{A}{2} \right)\]
\[1+\cos A=2{{\cos }^{2}}\left( \dfrac{A}{2} \right)\]
Step by step solution:
Given, \[\cos \theta =\cos \alpha .\cos \beta \,\,\,\,--(1)\]
Now, we have \[\tan \left( \dfrac{\theta +\alpha }{2} \right)\tan \left( \dfrac{\theta -\alpha }{2} \right)\], by definition we know that tangent is the ratio of sine to cosine.
\[\Rightarrow \tan \left( \dfrac{\theta +\alpha }{2} \right)\tan \left( \dfrac{\theta -\alpha }{2} \right)=\dfrac{\sin \left( \dfrac{\theta +\alpha }{2} \right)}{\cos \left( \dfrac{\theta +\alpha }{2} \right)}\dfrac{\sin \left( \dfrac{\theta -\alpha }{2} \right)}{\cos \left( \dfrac{\theta -\alpha }{2} \right)}\]
Multiplying 2 and dividing 2 on RHS,
\[=\dfrac{2\sin \left( \dfrac{\theta +\alpha }{2} \right)}{2\cos \left( \dfrac{\theta +\alpha }{2} \right)}\dfrac{\sin \left( \dfrac{\theta -\alpha }{2} \right)}{\cos \left( \dfrac{\theta -\alpha }{2} \right)}\]
We know that \[\cos \alpha -\cos \theta =2\sin \left( \dfrac{\theta +\alpha }{2} \right)\sin \left( \dfrac{\theta -\alpha }{2} \right)\] and \[\cos \alpha +\cos \theta =2\cos \left( \dfrac{\theta +\alpha }{2} \right)\cos \left( \dfrac{\theta -\alpha }{2} \right)\], using this we have,
\[=\dfrac{\cos \alpha -\cos \theta }{\cos \alpha +\cos \theta }\]
But from equation 1 we have \[\cos \theta =\cos \alpha .\cos \beta \],
\[=\dfrac{\cos \alpha -\cos \alpha \cos \beta }{\cos \alpha +\cos \alpha \cos \beta }\]
Taking \[\cos \alpha \] common we have
\[=\dfrac{\cos \alpha \left( 1-\cos \beta \right)}{\cos \alpha \left( 1+\cos \beta \right)}\]
\[=\dfrac{1-\cos \beta }{1+\cos \beta }\]
\[=\dfrac{2{{\sin }^{2}}\left( \dfrac{\beta }{2} \right)}{2{{\cos }^{2}}\left( \dfrac{\beta }{2} \right)}\]
\[={{\tan }^{2}}\left( \dfrac{\beta }{2} \right)\]
Hence, \[\tan \left( \dfrac{\theta +\alpha }{2} \right)\tan \left( \dfrac{\theta -\alpha }{2} \right)={{\tan }^{2}}\left( \dfrac{\beta }{2} \right)\].
Hence, option (b) is correct.
Note: Trigonometric identities and ratios are the concept that is used to illustrate the given problem. Trigonometric functions, including variables and constants, are all those trigonometric identities. The replacement method using trigonometric functions is a typical approach used to solve this issue.
Recently Updated Pages
Geometry of Complex Numbers Explained

Electricity and Magnetism Explained: Key Concepts & Applications

JEE Energetics Important Concepts and Tips for Exam Preparation

JEE Isolation, Preparation and Properties of Non-metals Important Concepts and Tips for Exam Preparation

JEE Main 2021 July 25 Shift 1 Question Paper with Answer Key

JEE Main 2021 July 22 Shift 2 Question Paper with Answer Key

Trending doubts
JEE Main 2026: Application Form Open, Exam Dates, Syllabus, Eligibility & Question Papers

Derivation of Equation of Trajectory Explained for Students

Hybridisation in Chemistry – Concept, Types & Applications

Understanding the Angle of Deviation in a Prism

How to Convert a Galvanometer into an Ammeter or Voltmeter

Understanding Centrifugal Force in Physics

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

NCERT Solutions for Class 11 Maths Chapter 10 Conic Sections

NCERT Solutions for Class 11 Maths Chapter 9 Straight Lines

NCERT Solutions For Class 11 Maths Chapter 8 Sequences And Series

NCERT Solutions For Class 11 Maths Chapter 12 Limits And Derivatives

JEE Main Marking Scheme 2026- Paper-Wise Marks Distribution and Negative Marking Details

