
If \[\cos \theta =\cos \alpha .\cos \beta \], then \[\tan \left( \dfrac{\theta +\alpha }{2} \right)\tan \left( \dfrac{\theta -\alpha }{2} \right)\] is equal to
a) \[{{\tan }^{2}}\left( \dfrac{\alpha }{2} \right)\]
b) \[{{\tan }^{2}}\left( \dfrac{\beta }{2} \right)\]
c) \[{{\tan }^{2}}\left( \dfrac{\theta }{2} \right)\]
d) \[{{\cot }^{2}}\left( \dfrac{\beta }{2} \right)\]
Answer
219k+ views
Hint: By using the \[\cos \theta =\cos \alpha .\cos \beta \], we need to find the value of \[\tan \left( \dfrac{\theta +\alpha }{2} \right)\tan \left( \dfrac{\theta -\alpha }{2} \right)\]. We know that tangent is the ratio of sine to cosine function by applying this and using some trigonometric formula we can find the value.
Formula used:
\[\cos A-\cos B=2\sin \left( \dfrac{A+B}{2} \right)\sin \left( \dfrac{B-A}{2} \right)\]
\[\cos A+\cos B=2\cos \left( \dfrac{A+B}{2} \right)\cos \left( \dfrac{A-B}{2} \right)\]
\[1-\cos A=2{{\sin }^{2}}\left( \dfrac{A}{2} \right)\]
\[1+\cos A=2{{\cos }^{2}}\left( \dfrac{A}{2} \right)\]
Step by step solution:
Given, \[\cos \theta =\cos \alpha .\cos \beta \,\,\,\,--(1)\]
Now, we have \[\tan \left( \dfrac{\theta +\alpha }{2} \right)\tan \left( \dfrac{\theta -\alpha }{2} \right)\], by definition we know that tangent is the ratio of sine to cosine.
\[\Rightarrow \tan \left( \dfrac{\theta +\alpha }{2} \right)\tan \left( \dfrac{\theta -\alpha }{2} \right)=\dfrac{\sin \left( \dfrac{\theta +\alpha }{2} \right)}{\cos \left( \dfrac{\theta +\alpha }{2} \right)}\dfrac{\sin \left( \dfrac{\theta -\alpha }{2} \right)}{\cos \left( \dfrac{\theta -\alpha }{2} \right)}\]
Multiplying 2 and dividing 2 on RHS,
\[=\dfrac{2\sin \left( \dfrac{\theta +\alpha }{2} \right)}{2\cos \left( \dfrac{\theta +\alpha }{2} \right)}\dfrac{\sin \left( \dfrac{\theta -\alpha }{2} \right)}{\cos \left( \dfrac{\theta -\alpha }{2} \right)}\]
We know that \[\cos \alpha -\cos \theta =2\sin \left( \dfrac{\theta +\alpha }{2} \right)\sin \left( \dfrac{\theta -\alpha }{2} \right)\] and \[\cos \alpha +\cos \theta =2\cos \left( \dfrac{\theta +\alpha }{2} \right)\cos \left( \dfrac{\theta -\alpha }{2} \right)\], using this we have,
\[=\dfrac{\cos \alpha -\cos \theta }{\cos \alpha +\cos \theta }\]
But from equation 1 we have \[\cos \theta =\cos \alpha .\cos \beta \],
\[=\dfrac{\cos \alpha -\cos \alpha \cos \beta }{\cos \alpha +\cos \alpha \cos \beta }\]
Taking \[\cos \alpha \] common we have
\[=\dfrac{\cos \alpha \left( 1-\cos \beta \right)}{\cos \alpha \left( 1+\cos \beta \right)}\]
\[=\dfrac{1-\cos \beta }{1+\cos \beta }\]
\[=\dfrac{2{{\sin }^{2}}\left( \dfrac{\beta }{2} \right)}{2{{\cos }^{2}}\left( \dfrac{\beta }{2} \right)}\]
\[={{\tan }^{2}}\left( \dfrac{\beta }{2} \right)\]
Hence, \[\tan \left( \dfrac{\theta +\alpha }{2} \right)\tan \left( \dfrac{\theta -\alpha }{2} \right)={{\tan }^{2}}\left( \dfrac{\beta }{2} \right)\].
Hence, option (b) is correct.
Note: Trigonometric identities and ratios are the concept that is used to illustrate the given problem. Trigonometric functions, including variables and constants, are all those trigonometric identities. The replacement method using trigonometric functions is a typical approach used to solve this issue.
Formula used:
\[\cos A-\cos B=2\sin \left( \dfrac{A+B}{2} \right)\sin \left( \dfrac{B-A}{2} \right)\]
\[\cos A+\cos B=2\cos \left( \dfrac{A+B}{2} \right)\cos \left( \dfrac{A-B}{2} \right)\]
\[1-\cos A=2{{\sin }^{2}}\left( \dfrac{A}{2} \right)\]
\[1+\cos A=2{{\cos }^{2}}\left( \dfrac{A}{2} \right)\]
Step by step solution:
Given, \[\cos \theta =\cos \alpha .\cos \beta \,\,\,\,--(1)\]
Now, we have \[\tan \left( \dfrac{\theta +\alpha }{2} \right)\tan \left( \dfrac{\theta -\alpha }{2} \right)\], by definition we know that tangent is the ratio of sine to cosine.
\[\Rightarrow \tan \left( \dfrac{\theta +\alpha }{2} \right)\tan \left( \dfrac{\theta -\alpha }{2} \right)=\dfrac{\sin \left( \dfrac{\theta +\alpha }{2} \right)}{\cos \left( \dfrac{\theta +\alpha }{2} \right)}\dfrac{\sin \left( \dfrac{\theta -\alpha }{2} \right)}{\cos \left( \dfrac{\theta -\alpha }{2} \right)}\]
Multiplying 2 and dividing 2 on RHS,
\[=\dfrac{2\sin \left( \dfrac{\theta +\alpha }{2} \right)}{2\cos \left( \dfrac{\theta +\alpha }{2} \right)}\dfrac{\sin \left( \dfrac{\theta -\alpha }{2} \right)}{\cos \left( \dfrac{\theta -\alpha }{2} \right)}\]
We know that \[\cos \alpha -\cos \theta =2\sin \left( \dfrac{\theta +\alpha }{2} \right)\sin \left( \dfrac{\theta -\alpha }{2} \right)\] and \[\cos \alpha +\cos \theta =2\cos \left( \dfrac{\theta +\alpha }{2} \right)\cos \left( \dfrac{\theta -\alpha }{2} \right)\], using this we have,
\[=\dfrac{\cos \alpha -\cos \theta }{\cos \alpha +\cos \theta }\]
But from equation 1 we have \[\cos \theta =\cos \alpha .\cos \beta \],
\[=\dfrac{\cos \alpha -\cos \alpha \cos \beta }{\cos \alpha +\cos \alpha \cos \beta }\]
Taking \[\cos \alpha \] common we have
\[=\dfrac{\cos \alpha \left( 1-\cos \beta \right)}{\cos \alpha \left( 1+\cos \beta \right)}\]
\[=\dfrac{1-\cos \beta }{1+\cos \beta }\]
\[=\dfrac{2{{\sin }^{2}}\left( \dfrac{\beta }{2} \right)}{2{{\cos }^{2}}\left( \dfrac{\beta }{2} \right)}\]
\[={{\tan }^{2}}\left( \dfrac{\beta }{2} \right)\]
Hence, \[\tan \left( \dfrac{\theta +\alpha }{2} \right)\tan \left( \dfrac{\theta -\alpha }{2} \right)={{\tan }^{2}}\left( \dfrac{\beta }{2} \right)\].
Hence, option (b) is correct.
Note: Trigonometric identities and ratios are the concept that is used to illustrate the given problem. Trigonometric functions, including variables and constants, are all those trigonometric identities. The replacement method using trigonometric functions is a typical approach used to solve this issue.
Recently Updated Pages
The maximum number of equivalence relations on the-class-11-maths-JEE_Main

A train is going from London to Cambridge stops at class 11 maths JEE_Main

Find the reminder when 798 is divided by 5 class 11 maths JEE_Main

An aeroplane left 50 minutes later than its schedu-class-11-maths-JEE_Main

A man on the top of a vertical observation tower o-class-11-maths-JEE_Main

In an election there are 8 candidates out of which class 11 maths JEE_Main

Trending doubts
JEE Main 2026: Application Form Open, Exam Dates, Syllabus, Eligibility & Question Papers

Derivation of Equation of Trajectory Explained for Students

Hybridisation in Chemistry – Concept, Types & Applications

Understanding the Angle of Deviation in a Prism

Understanding Collisions: Types and Examples for Students

Understanding Atomic Structure for Beginners

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

NCERT Solutions for Class 11 Maths Chapter 10 Conic Sections

NCERT Solutions for Class 11 Maths Chapter 9 Straight Lines

NCERT Solutions For Class 11 Maths Chapter 8 Sequences And Series

How to Convert a Galvanometer into an Ammeter or Voltmeter

NCERT Solutions For Class 11 Maths Chapter 12 Limits And Derivatives

