
If \[\cos \theta =\cos \alpha .\cos \beta \], then \[\tan \left( \dfrac{\theta +\alpha }{2} \right)\tan \left( \dfrac{\theta -\alpha }{2} \right)\] is equal to
a) \[{{\tan }^{2}}\left( \dfrac{\alpha }{2} \right)\]
b) \[{{\tan }^{2}}\left( \dfrac{\beta }{2} \right)\]
c) \[{{\tan }^{2}}\left( \dfrac{\theta }{2} \right)\]
d) \[{{\cot }^{2}}\left( \dfrac{\beta }{2} \right)\]
Answer
232.8k+ views
Hint: By using the \[\cos \theta =\cos \alpha .\cos \beta \], we need to find the value of \[\tan \left( \dfrac{\theta +\alpha }{2} \right)\tan \left( \dfrac{\theta -\alpha }{2} \right)\]. We know that tangent is the ratio of sine to cosine function by applying this and using some trigonometric formula we can find the value.
Formula used:
\[\cos A-\cos B=2\sin \left( \dfrac{A+B}{2} \right)\sin \left( \dfrac{B-A}{2} \right)\]
\[\cos A+\cos B=2\cos \left( \dfrac{A+B}{2} \right)\cos \left( \dfrac{A-B}{2} \right)\]
\[1-\cos A=2{{\sin }^{2}}\left( \dfrac{A}{2} \right)\]
\[1+\cos A=2{{\cos }^{2}}\left( \dfrac{A}{2} \right)\]
Step by step solution:
Given, \[\cos \theta =\cos \alpha .\cos \beta \,\,\,\,--(1)\]
Now, we have \[\tan \left( \dfrac{\theta +\alpha }{2} \right)\tan \left( \dfrac{\theta -\alpha }{2} \right)\], by definition we know that tangent is the ratio of sine to cosine.
\[\Rightarrow \tan \left( \dfrac{\theta +\alpha }{2} \right)\tan \left( \dfrac{\theta -\alpha }{2} \right)=\dfrac{\sin \left( \dfrac{\theta +\alpha }{2} \right)}{\cos \left( \dfrac{\theta +\alpha }{2} \right)}\dfrac{\sin \left( \dfrac{\theta -\alpha }{2} \right)}{\cos \left( \dfrac{\theta -\alpha }{2} \right)}\]
Multiplying 2 and dividing 2 on RHS,
\[=\dfrac{2\sin \left( \dfrac{\theta +\alpha }{2} \right)}{2\cos \left( \dfrac{\theta +\alpha }{2} \right)}\dfrac{\sin \left( \dfrac{\theta -\alpha }{2} \right)}{\cos \left( \dfrac{\theta -\alpha }{2} \right)}\]
We know that \[\cos \alpha -\cos \theta =2\sin \left( \dfrac{\theta +\alpha }{2} \right)\sin \left( \dfrac{\theta -\alpha }{2} \right)\] and \[\cos \alpha +\cos \theta =2\cos \left( \dfrac{\theta +\alpha }{2} \right)\cos \left( \dfrac{\theta -\alpha }{2} \right)\], using this we have,
\[=\dfrac{\cos \alpha -\cos \theta }{\cos \alpha +\cos \theta }\]
But from equation 1 we have \[\cos \theta =\cos \alpha .\cos \beta \],
\[=\dfrac{\cos \alpha -\cos \alpha \cos \beta }{\cos \alpha +\cos \alpha \cos \beta }\]
Taking \[\cos \alpha \] common we have
\[=\dfrac{\cos \alpha \left( 1-\cos \beta \right)}{\cos \alpha \left( 1+\cos \beta \right)}\]
\[=\dfrac{1-\cos \beta }{1+\cos \beta }\]
\[=\dfrac{2{{\sin }^{2}}\left( \dfrac{\beta }{2} \right)}{2{{\cos }^{2}}\left( \dfrac{\beta }{2} \right)}\]
\[={{\tan }^{2}}\left( \dfrac{\beta }{2} \right)\]
Hence, \[\tan \left( \dfrac{\theta +\alpha }{2} \right)\tan \left( \dfrac{\theta -\alpha }{2} \right)={{\tan }^{2}}\left( \dfrac{\beta }{2} \right)\].
Hence, option (b) is correct.
Note: Trigonometric identities and ratios are the concept that is used to illustrate the given problem. Trigonometric functions, including variables and constants, are all those trigonometric identities. The replacement method using trigonometric functions is a typical approach used to solve this issue.
Formula used:
\[\cos A-\cos B=2\sin \left( \dfrac{A+B}{2} \right)\sin \left( \dfrac{B-A}{2} \right)\]
\[\cos A+\cos B=2\cos \left( \dfrac{A+B}{2} \right)\cos \left( \dfrac{A-B}{2} \right)\]
\[1-\cos A=2{{\sin }^{2}}\left( \dfrac{A}{2} \right)\]
\[1+\cos A=2{{\cos }^{2}}\left( \dfrac{A}{2} \right)\]
Step by step solution:
Given, \[\cos \theta =\cos \alpha .\cos \beta \,\,\,\,--(1)\]
Now, we have \[\tan \left( \dfrac{\theta +\alpha }{2} \right)\tan \left( \dfrac{\theta -\alpha }{2} \right)\], by definition we know that tangent is the ratio of sine to cosine.
\[\Rightarrow \tan \left( \dfrac{\theta +\alpha }{2} \right)\tan \left( \dfrac{\theta -\alpha }{2} \right)=\dfrac{\sin \left( \dfrac{\theta +\alpha }{2} \right)}{\cos \left( \dfrac{\theta +\alpha }{2} \right)}\dfrac{\sin \left( \dfrac{\theta -\alpha }{2} \right)}{\cos \left( \dfrac{\theta -\alpha }{2} \right)}\]
Multiplying 2 and dividing 2 on RHS,
\[=\dfrac{2\sin \left( \dfrac{\theta +\alpha }{2} \right)}{2\cos \left( \dfrac{\theta +\alpha }{2} \right)}\dfrac{\sin \left( \dfrac{\theta -\alpha }{2} \right)}{\cos \left( \dfrac{\theta -\alpha }{2} \right)}\]
We know that \[\cos \alpha -\cos \theta =2\sin \left( \dfrac{\theta +\alpha }{2} \right)\sin \left( \dfrac{\theta -\alpha }{2} \right)\] and \[\cos \alpha +\cos \theta =2\cos \left( \dfrac{\theta +\alpha }{2} \right)\cos \left( \dfrac{\theta -\alpha }{2} \right)\], using this we have,
\[=\dfrac{\cos \alpha -\cos \theta }{\cos \alpha +\cos \theta }\]
But from equation 1 we have \[\cos \theta =\cos \alpha .\cos \beta \],
\[=\dfrac{\cos \alpha -\cos \alpha \cos \beta }{\cos \alpha +\cos \alpha \cos \beta }\]
Taking \[\cos \alpha \] common we have
\[=\dfrac{\cos \alpha \left( 1-\cos \beta \right)}{\cos \alpha \left( 1+\cos \beta \right)}\]
\[=\dfrac{1-\cos \beta }{1+\cos \beta }\]
\[=\dfrac{2{{\sin }^{2}}\left( \dfrac{\beta }{2} \right)}{2{{\cos }^{2}}\left( \dfrac{\beta }{2} \right)}\]
\[={{\tan }^{2}}\left( \dfrac{\beta }{2} \right)\]
Hence, \[\tan \left( \dfrac{\theta +\alpha }{2} \right)\tan \left( \dfrac{\theta -\alpha }{2} \right)={{\tan }^{2}}\left( \dfrac{\beta }{2} \right)\].
Hence, option (b) is correct.
Note: Trigonometric identities and ratios are the concept that is used to illustrate the given problem. Trigonometric functions, including variables and constants, are all those trigonometric identities. The replacement method using trigonometric functions is a typical approach used to solve this issue.
Recently Updated Pages
Geometry of Complex Numbers Explained

JEE General Topics in Chemistry Important Concepts and Tips

JEE Extractive Metallurgy Important Concepts and Tips for Exam Preparation

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

JEE Atomic Structure and Chemical Bonding important Concepts and Tips

Electricity and Magnetism Explained: Key Concepts & Applications

Trending doubts
JEE Main 2026: Session 2 Registration Open, City Intimation Slip, Exam Dates, Syllabus & Eligibility

JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

JEE Main Marking Scheme 2026- Paper-Wise Marks Distribution and Negative Marking Details

Understanding the Angle of Deviation in a Prism

Hybridisation in Chemistry – Concept, Types & Applications

How to Convert a Galvanometer into an Ammeter or Voltmeter

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

NCERT Solutions For Class 11 Maths Chapter 12 Limits and Derivatives (2025-26)

NCERT Solutions For Class 11 Maths Chapter 10 Conic Sections (2025-26)

Understanding the Electric Field of a Uniformly Charged Ring

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

Derivation of Equation of Trajectory Explained for Students

