
If \[\cos A\sin \left( {A - \dfrac{n}{6}} \right)\] is maximum, then the value of\[A\]is equal to
A. \[\dfrac{\pi }{3}\]
B. \[\dfrac{\pi }{4}\]
C. \[\dfrac{\pi }{2}\]
D. None of these
Answer
164.1k+ views
Hint: Trigonometry identities are useful when equations are much complicated to solve. They are the fundamental tools of trigonometry used in factoring, finding common denominators, and resolving trigonometric equations. In this case, since\[\cos A\sin \left( {A - \dfrac{\pi }{6}} \right)\], simply compute the trigonometry equation using trigonometry identities and formulas and then simply the obtained expression by finding common divisors.
Complete step by step solution: The given equation according to the question is:
\[\cos A\sin \left( {A - \dfrac{\pi }{6}} \right)\]
After finding, the equation becomes,
\[ = \dfrac{1}{2}\left[ {\sin \left( {2A - \dfrac{\pi }{6}} \right) - \sin \dfrac{\pi }{6}} \right]\]
Here, we will replace the value according to the trigonometry formula:
\[\cos \left( A \right)\left( {\dfrac{{\sqrt 3 }}{2}\sin \left( A \right) - \dfrac{1}{2}\cos \left( A \right)} \right)\]
Rewrite the obtained equation as:
\[ = \dfrac{1}{2}\left( {\dfrac{{\sqrt 3 }}{2}\sin \left( {2A} \right) - \dfrac{1}{2}\cos \left( {2A} \right) - \sin \left( {\dfrac{\pi }{6}} \right)} \right)\]
Simplify the denominator, we obtain:
\[ = \dfrac{{ - 1 + \sqrt 3 \sin \left( {2A} \right) - \cos \left( {2A} \right)}}{4}\]
But\[\sin \left( {2A - \dfrac{\pi }{6}} \right) - \dfrac{1}{2}\]reaches the maximum value at
\[2A - \dfrac{\pi }{6} = \dfrac{\pi }{2}\]
We must choose a side to resolve first.
Add \[\dfrac{\pi }{6}\]either side:
\[{\rm{2A}} - \dfrac{\pi }{6} + \dfrac{\pi }{6} = \dfrac{\pi }{2} + \dfrac{\pi }{6}\]
Simplify the above equation into less complicated form:
\[2A = \dfrac{{2\pi }}{3}\]
Divide either side by\[2\]:
\[\dfrac{{2A}}{2} = \dfrac{{\dfrac{{2\pi }}{3}}}{2}\]
Simplify to obtain the value of A:
Solve for A:
\[ \Rightarrow A = \dfrac{\pi }{3}\]
Hence, the value of \[A\]is equal to\[\dfrac{\pi }{3}\].
Option ‘A’ is correct
Note: Sometimes students build error in applying identities and aren't able to comprehend the way to make the opposite. Students from time to time apply identities incorrectly. Creating the error of simplifying either side at the same time, once applying pure trig identities could be a typical error. To unravel this kind of issues, there are numerous ways offered. There are totally different formulas offered to unravel these varieties of issues. To avoid this kind of downside, we've to settle on the right approach and therefore the right formulas and identities.
Complete step by step solution: The given equation according to the question is:
\[\cos A\sin \left( {A - \dfrac{\pi }{6}} \right)\]
After finding, the equation becomes,
\[ = \dfrac{1}{2}\left[ {\sin \left( {2A - \dfrac{\pi }{6}} \right) - \sin \dfrac{\pi }{6}} \right]\]
Here, we will replace the value according to the trigonometry formula:
\[\cos \left( A \right)\left( {\dfrac{{\sqrt 3 }}{2}\sin \left( A \right) - \dfrac{1}{2}\cos \left( A \right)} \right)\]
Rewrite the obtained equation as:
\[ = \dfrac{1}{2}\left( {\dfrac{{\sqrt 3 }}{2}\sin \left( {2A} \right) - \dfrac{1}{2}\cos \left( {2A} \right) - \sin \left( {\dfrac{\pi }{6}} \right)} \right)\]
Simplify the denominator, we obtain:
\[ = \dfrac{{ - 1 + \sqrt 3 \sin \left( {2A} \right) - \cos \left( {2A} \right)}}{4}\]
But\[\sin \left( {2A - \dfrac{\pi }{6}} \right) - \dfrac{1}{2}\]reaches the maximum value at
\[2A - \dfrac{\pi }{6} = \dfrac{\pi }{2}\]
We must choose a side to resolve first.
Add \[\dfrac{\pi }{6}\]either side:
\[{\rm{2A}} - \dfrac{\pi }{6} + \dfrac{\pi }{6} = \dfrac{\pi }{2} + \dfrac{\pi }{6}\]
Simplify the above equation into less complicated form:
\[2A = \dfrac{{2\pi }}{3}\]
Divide either side by\[2\]:
\[\dfrac{{2A}}{2} = \dfrac{{\dfrac{{2\pi }}{3}}}{2}\]
Simplify to obtain the value of A:
Solve for A:
\[ \Rightarrow A = \dfrac{\pi }{3}\]
Hence, the value of \[A\]is equal to\[\dfrac{\pi }{3}\].
Option ‘A’ is correct
Note: Sometimes students build error in applying identities and aren't able to comprehend the way to make the opposite. Students from time to time apply identities incorrectly. Creating the error of simplifying either side at the same time, once applying pure trig identities could be a typical error. To unravel this kind of issues, there are numerous ways offered. There are totally different formulas offered to unravel these varieties of issues. To avoid this kind of downside, we've to settle on the right approach and therefore the right formulas and identities.
Recently Updated Pages
Geometry of Complex Numbers – Topics, Reception, Audience and Related Readings

JEE Main 2021 July 25 Shift 1 Question Paper with Answer Key

JEE Main 2021 July 22 Shift 2 Question Paper with Answer Key

JEE Atomic Structure and Chemical Bonding important Concepts and Tips

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

JEE Electricity and Magnetism Important Concepts and Tips for Exam Preparation

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

Atomic Structure - Electrons, Protons, Neutrons and Atomic Models

Displacement-Time Graph and Velocity-Time Graph for JEE

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Learn About Angle Of Deviation In Prism: JEE Main Physics 2025

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

NCERT Solutions for Class 11 Maths Chapter 4 Complex Numbers and Quadratic Equations

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

Degree of Dissociation and Its Formula With Solved Example for JEE

Instantaneous Velocity - Formula based Examples for JEE

NCERT Solutions for Class 11 Maths In Hindi Chapter 1 Sets
