
If \[\cos (A - B) = \dfrac{3}{5}\] and \[\tan A\tan B = 2\] , then choose the correct option.
A. \[\cos A\cos B = \dfrac{1}{5}\]
B.\[\sin A\sin B = - \dfrac{2}{5}\]
C.\[\cos (A + B) = - \dfrac{1}{5}\]
D.\[\sin A\cos B = \dfrac{4}{5}\]
Answer
164.1k+ views
Hint: Write \[\tan A\tan B\] in terms of \[\sin A\],\[\sin B\],\[\cos A\] and \[\cos B\].From there we will get the relation in \[\sin A\sin B\] and \[\cos A\cos B\]. Expand the formulae of \[\cos (A - B)\] and use the relations obtained earlier to get the desired values.
Formula Used
1.\[\tan \theta = \dfrac{{\sin \theta }}{{\cos \theta }}\]
2.\[\cos (A - B) = \cos A\cos B + \sin A\sin B\]
3. \[\cos (A + B) = \cos A\cos B - \sin A\sin B\]
Complete step by step solution
Given- \[\tan A\tan B = 2\]
We know that \[\tan \theta = \dfrac{{\sin \theta }}{{\cos \theta }}\] ,using this identity in above relation
\[\dfrac{{\sin A\sin B}}{{\cos A\cos B}} = 2\]
Cross-multiplying the terms
\[\sin A\sin B = 2\cos A\cos B\] (1)
Again, \[\cos (A - B) = \dfrac{3}{5}\] (Given)
Applying the formula \[\cos (A - B) = \cos A\cos B + \sin A\sin B\]
\[\cos A\cos B + \sin A\sin B = \dfrac{3}{5}\]
Using equation (1)
\[\cos A\cos B + 2\cos A\cos B = \dfrac{3}{5}\]
\[ \Rightarrow 3\cos A\cos B = \dfrac{3}{5}\]
\[ \Rightarrow \cos A\cos B = \dfrac{1}{5}\]
Again, using equation (1)
\[\sin A\sin B = 2\cos A\cos B\]
\[ \Rightarrow \sin A\sin B = 2*\dfrac{1}{5}\]
\[ \Rightarrow \sin A\sin B = \dfrac{2}{5}\]
Now using the formula \[\cos (A + B) = \cos A\cos B - \sin A\sin B\]
\[\cos (A + B) = \dfrac{1}{5} - \dfrac{2}{5}\]
\[ \Rightarrow \cos (A + B) = - \dfrac{1}{5}\]
Hence option C is the correct answer.
Note: The values \[\sin A\cos B\] and \[\cos A\sin B\] are not given. Thus we will give equations to find the values of \[\sin A\cos B\] and \[\cos A\sin B\].
Students must not get confused in the sum and difference formulas of cosine; they are as follows –
\[\cos (A - B) = \cos A\cos B + \sin A\sin B\]
\[\cos (A + B) = \cos A\cos B - \sin A\sin B\]
Formula Used
1.\[\tan \theta = \dfrac{{\sin \theta }}{{\cos \theta }}\]
2.\[\cos (A - B) = \cos A\cos B + \sin A\sin B\]
3. \[\cos (A + B) = \cos A\cos B - \sin A\sin B\]
Complete step by step solution
Given- \[\tan A\tan B = 2\]
We know that \[\tan \theta = \dfrac{{\sin \theta }}{{\cos \theta }}\] ,using this identity in above relation
\[\dfrac{{\sin A\sin B}}{{\cos A\cos B}} = 2\]
Cross-multiplying the terms
\[\sin A\sin B = 2\cos A\cos B\] (1)
Again, \[\cos (A - B) = \dfrac{3}{5}\] (Given)
Applying the formula \[\cos (A - B) = \cos A\cos B + \sin A\sin B\]
\[\cos A\cos B + \sin A\sin B = \dfrac{3}{5}\]
Using equation (1)
\[\cos A\cos B + 2\cos A\cos B = \dfrac{3}{5}\]
\[ \Rightarrow 3\cos A\cos B = \dfrac{3}{5}\]
\[ \Rightarrow \cos A\cos B = \dfrac{1}{5}\]
Again, using equation (1)
\[\sin A\sin B = 2\cos A\cos B\]
\[ \Rightarrow \sin A\sin B = 2*\dfrac{1}{5}\]
\[ \Rightarrow \sin A\sin B = \dfrac{2}{5}\]
Now using the formula \[\cos (A + B) = \cos A\cos B - \sin A\sin B\]
\[\cos (A + B) = \dfrac{1}{5} - \dfrac{2}{5}\]
\[ \Rightarrow \cos (A + B) = - \dfrac{1}{5}\]
Hence option C is the correct answer.
Note: The values \[\sin A\cos B\] and \[\cos A\sin B\] are not given. Thus we will give equations to find the values of \[\sin A\cos B\] and \[\cos A\sin B\].
Students must not get confused in the sum and difference formulas of cosine; they are as follows –
\[\cos (A - B) = \cos A\cos B + \sin A\sin B\]
\[\cos (A + B) = \cos A\cos B - \sin A\sin B\]
Recently Updated Pages
Geometry of Complex Numbers – Topics, Reception, Audience and Related Readings

JEE Main 2021 July 25 Shift 1 Question Paper with Answer Key

JEE Main 2021 July 22 Shift 2 Question Paper with Answer Key

JEE Atomic Structure and Chemical Bonding important Concepts and Tips

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

JEE Electricity and Magnetism Important Concepts and Tips for Exam Preparation

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

Atomic Structure - Electrons, Protons, Neutrons and Atomic Models

Displacement-Time Graph and Velocity-Time Graph for JEE

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Learn About Angle Of Deviation In Prism: JEE Main Physics 2025

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

NCERT Solutions for Class 11 Maths Chapter 4 Complex Numbers and Quadratic Equations

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

Degree of Dissociation and Its Formula With Solved Example for JEE

Instantaneous Velocity - Formula based Examples for JEE

NCERT Solutions for Class 11 Maths In Hindi Chapter 1 Sets
