
If \[co{s^{ - 1}}\sqrt p + co{s^{ - 1}}\sqrt {\left( {1{\text{ }} - {\text{ }}p} \right)} + co{s^{ - 1}}\sqrt {\left( {1{\text{ }} - {\text{ }}q} \right)} = \dfrac{{3\pi }}{4}\], then the value of \[q\] is
A. \[1\]
B. \[\dfrac{1}{{\sqrt 2 }}\]
C. \[\dfrac{1}{3}\]
D. \[\dfrac{1}{2}\]
Answer
219.9k+ views
Hint: Use the formulas of inverse trigonometric functions to solve the given question. Here we convert the second cos inverse ratio to a sin inverse ratio by using a formula for simplification. By substituting the formulas and simplifying we can obtain the value of q.
Formula Used:
\[{\sin ^{ - 1}}x = {\cos ^{ - 1}}\sqrt {1 - {x^2}} \]
\[{\cos^{ - 1}}x + si{n^{ - 1}}x = \dfrac{\pi }{2}\]
Complete step by step Solution:
\[co{s^{ - 1}}\sqrt p + co{s^{ - 1}}\sqrt {\left( {1{\text{ }} - {\text{ }}p} \right)} + co{s^{ - 1}}\sqrt {\left( {1{\text{ }} - {\text{ }}q} \right)} = \dfrac{{3\pi }}{4}\]
\[co{s^{ - 1}}\sqrt p + co{s^{ - 1}}\sqrt {\left( {1{\text{ }} - {\text{ (}}\sqrt p {)^2}} \right)} + co{s^{ - 1}}\sqrt {\left( {1{\text{ }} - {\text{ (}}\sqrt q {)^2}} \right)} = \dfrac{{3\pi }}{4}\]
\[co{s^{ - 1}}\sqrt p + {\sin ^{ - 1}}\sqrt p + co{s^{ - 1}}\sqrt {\left( {1{\text{ }} - {\text{ q}}} \right)} = \dfrac{{3\pi }}{4}\] [ Since \[{\sin ^{ - 1}}x = {\cos ^{ - 1}}\sqrt {1 - {x^2}} \]]
Using the formula \[co{s^{ - 1}}x + si{n^{ - 1}}x = \dfrac{\pi }{2}\]
\[\dfrac{\pi }{2} + co{s^{ - 1}}\sqrt {1 - q} = \dfrac{{3\pi }}{4}\]
\[co{s^{ - 1}}\sqrt {1 - q} = \dfrac{{3\pi }}{4} - \dfrac{\pi }{2}\]
\[co{s^{ - 1}}\sqrt {1 - q} = \dfrac{\pi }{4}\]
\[\sqrt {1 - q} = \cos \dfrac{\pi }{4}\]
\[\sqrt {1 - q} = \dfrac{1}{{\sqrt 2 }}\]
Squaring on both sides we get,
\[1 - q = \dfrac{1}{2}\]
\[q = 1 - \dfrac{1}{2}\]
\[q = \dfrac{1}{2}\]
Hence, the correct option is D.
Note: In this question\[p\] can be rewritten as \[{(\sqrt p )^2}\]. It is important to know formulas and properties of inverse trigonometric functions to solve these kinds of questions. It is also important to remember the trigonometric ratio table to find the values of trigonometric ratios at different angles.
Formula Used:
\[{\sin ^{ - 1}}x = {\cos ^{ - 1}}\sqrt {1 - {x^2}} \]
\[{\cos^{ - 1}}x + si{n^{ - 1}}x = \dfrac{\pi }{2}\]
Complete step by step Solution:
\[co{s^{ - 1}}\sqrt p + co{s^{ - 1}}\sqrt {\left( {1{\text{ }} - {\text{ }}p} \right)} + co{s^{ - 1}}\sqrt {\left( {1{\text{ }} - {\text{ }}q} \right)} = \dfrac{{3\pi }}{4}\]
\[co{s^{ - 1}}\sqrt p + co{s^{ - 1}}\sqrt {\left( {1{\text{ }} - {\text{ (}}\sqrt p {)^2}} \right)} + co{s^{ - 1}}\sqrt {\left( {1{\text{ }} - {\text{ (}}\sqrt q {)^2}} \right)} = \dfrac{{3\pi }}{4}\]
\[co{s^{ - 1}}\sqrt p + {\sin ^{ - 1}}\sqrt p + co{s^{ - 1}}\sqrt {\left( {1{\text{ }} - {\text{ q}}} \right)} = \dfrac{{3\pi }}{4}\] [ Since \[{\sin ^{ - 1}}x = {\cos ^{ - 1}}\sqrt {1 - {x^2}} \]]
Using the formula \[co{s^{ - 1}}x + si{n^{ - 1}}x = \dfrac{\pi }{2}\]
\[\dfrac{\pi }{2} + co{s^{ - 1}}\sqrt {1 - q} = \dfrac{{3\pi }}{4}\]
\[co{s^{ - 1}}\sqrt {1 - q} = \dfrac{{3\pi }}{4} - \dfrac{\pi }{2}\]
\[co{s^{ - 1}}\sqrt {1 - q} = \dfrac{\pi }{4}\]
\[\sqrt {1 - q} = \cos \dfrac{\pi }{4}\]
\[\sqrt {1 - q} = \dfrac{1}{{\sqrt 2 }}\]
Squaring on both sides we get,
\[1 - q = \dfrac{1}{2}\]
\[q = 1 - \dfrac{1}{2}\]
\[q = \dfrac{1}{2}\]
Hence, the correct option is D.
Note: In this question\[p\] can be rewritten as \[{(\sqrt p )^2}\]. It is important to know formulas and properties of inverse trigonometric functions to solve these kinds of questions. It is also important to remember the trigonometric ratio table to find the values of trigonometric ratios at different angles.
Recently Updated Pages
Geometry of Complex Numbers Explained

Electricity and Magnetism Explained: Key Concepts & Applications

JEE Energetics Important Concepts and Tips for Exam Preparation

JEE Isolation, Preparation and Properties of Non-metals Important Concepts and Tips for Exam Preparation

JEE Main 2021 July 25 Shift 1 Question Paper with Answer Key

JEE Main 2021 July 22 Shift 2 Question Paper with Answer Key

Trending doubts
JEE Main 2026: Application Form Open, Exam Dates, Syllabus, Eligibility & Question Papers

Derivation of Equation of Trajectory Explained for Students

Hybridisation in Chemistry – Concept, Types & Applications

Understanding the Angle of Deviation in a Prism

Understanding Collisions: Types and Examples for Students

Understanding Atomic Structure for Beginners

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

How to Convert a Galvanometer into an Ammeter or Voltmeter

Understanding Centrifugal Force in Physics

JEE Main Marking Scheme 2026- Paper-Wise Marks Distribution and Negative Marking Details

Degree of Dissociation: Meaning, Formula, Calculation & Uses

Understanding Electromagnetic Waves and Their Importance

