
If $\begin{bmatrix}a \times b&b \times c&c \times a\end{bmatrix} = \lambda \begin{bmatrix}a&b&c\end{bmatrix}^2$. Then find the value of $\lambda $.
A. 0
B. 1
C. 2
D. 3
Answer
161.1k+ views
Hint: Apply triple product on the left side of the given equation. Then apply a cross product of two terms in the expression $\left( {b \times c} \right) \times \left( {c \times a} \right)$. Then use the commutative property of the triple product to get the simplest value of LHS and compare the simplest form with RHS to calculate the value of $\lambda$.
Formula Used:
$\begin{bmatrix}a&b&c\end{bmatrix} = a \cdot \left( {b \times c} \right)$
$\left( {a \times b} \right) \times \left( {c \times d} \right) = \begin{bmatrix}a&b&d\end{bmatrix}c - \begin{bmatrix}a&b&c\end{bmatrix}d$
$a \cdot \left( {b \times c} \right) = \left( {b \times c} \right) \cdot a$
$\begin{bmatrix}a&a&b\end{bmatrix} = \begin{bmatrix}a&b&b\end{bmatrix} = \begin{bmatrix}a&c&c\end{bmatrix} = 0$
$\begin{bmatrix}a&b&c\end{bmatrix} = \begin{bmatrix}b&c&a\end{bmatrix} = \begin{bmatrix}c&a&b\end{bmatrix}$
Complete step by step solution:
Given equation is $\begin{bmatrix}{a \times b}&{b \times c}&{c \times a}\end{bmatrix} = \lambda {\begin{bmatrix}a&b&c\end{bmatrix}^2}$
Apply the formula $\begin{bmatrix}a&b&c\end{bmatrix} = a \cdot \left( {b \times c} \right)$ on the left side of the equation
$\left( {a \times b} \right) \cdot \left( {\left( {b \times c} \right) \times \left( {c \times a} \right)} \right) = \lambda {\begin{bmatrix}a&b&c\end{bmatrix}^2}$
Now applying $\left( {a \times b} \right) \times \left( {c \times d} \right) = \begin{bmatrix}a&b&d\end{bmatrix}c - \begin{bmatrix}a&b&c\end{bmatrix}d$ in $\left( {b \times c} \right) \times \left( {c \times a} \right)$
$ \Rightarrow \left( {a \times b} \right) \cdot \left( {\begin{bmatrix}b&c&a\end{bmatrix} \cdot c - \begin{bmatrix}b&c&c\end{bmatrix} \cdot a} \right) = \lambda {\begin{bmatrix}a&b&c\end{bmatrix}^2}$
Apply the formula $\begin{bmatrix}a&a&b\end{bmatrix} = \begin{bmatrix}a&b&b\end{bmatrix} = \begin{bmatrix}a&c&c\end{bmatrix} = 0$
$ \Rightarrow \left( {a \times b} \right) \cdot \left( {\begin{bmatrix}b&c&a\end{bmatrix} \cdot c - 0} \right) = \lambda {\begin{bmatrix}a&b&c\end{bmatrix}^2}$
Apply the formula $a \cdot \left( {b \times c} \right) = \left( {b \times c} \right) \cdot a$
$ \Rightarrow \left( {a \times b} \right) \cdot c\begin{bmatrix}b&c&a\end{bmatrix} = \lambda {\begin{bmatrix}a&b&c\end{bmatrix}^2}$
$ \Rightarrow \left( {\left( {a \times b} \right) \cdot c} \right)\begin{bmatrix}b&c&a\end{bmatrix} = \lambda {\begin{bmatrix}a&b&c\end{bmatrix}^2}$
Apply the formulas $\begin{bmatrix}a&b&c\end{bmatrix} = a \cdot \left( {b \times c} \right)$ and $\begin{bmatrix}a&b&c\end{bmatrix} = \begin{bmatrix}b&c&a\end{bmatrix} = \begin{bmatrix}c&a&b\end{bmatrix}$
$ \Rightarrow \begin{bmatrix}a&b&c\end{bmatrix}\begin{bmatrix}a&b&c\end{bmatrix} = \lambda {\begin{bmatrix}a&b&c\end{bmatrix}^2}$
$ \Rightarrow {\begin{bmatrix}a&b&c\end{bmatrix}^2} = \lambda {\begin{bmatrix}a&b&c\end{bmatrix}^2}$
Cancel out ${\begin{bmatrix}a&b&c\end{bmatrix}^2}$
$ \Rightarrow \lambda = 1$
Option ‘A’ is correct
Note: Vector product and cross product can be confusing at times but they mean the same.
Cross Product: We calculate the cross product of two vectors using determinant notation. A $2 \times 2$ determinant is defined by. $\begin{vmatrix} a_1 & b_ 1 \\ a_2 & b_2\end{vmatrix} = a_1 b_2 − b_1 a_2$.
Vector Product: It is the product of the magnitude of the vectors and the sine of the angle between them, $a \times b =|a| |b| \sin \theta$.
Formula Used:
$\begin{bmatrix}a&b&c\end{bmatrix} = a \cdot \left( {b \times c} \right)$
$\left( {a \times b} \right) \times \left( {c \times d} \right) = \begin{bmatrix}a&b&d\end{bmatrix}c - \begin{bmatrix}a&b&c\end{bmatrix}d$
$a \cdot \left( {b \times c} \right) = \left( {b \times c} \right) \cdot a$
$\begin{bmatrix}a&a&b\end{bmatrix} = \begin{bmatrix}a&b&b\end{bmatrix} = \begin{bmatrix}a&c&c\end{bmatrix} = 0$
$\begin{bmatrix}a&b&c\end{bmatrix} = \begin{bmatrix}b&c&a\end{bmatrix} = \begin{bmatrix}c&a&b\end{bmatrix}$
Complete step by step solution:
Given equation is $\begin{bmatrix}{a \times b}&{b \times c}&{c \times a}\end{bmatrix} = \lambda {\begin{bmatrix}a&b&c\end{bmatrix}^2}$
Apply the formula $\begin{bmatrix}a&b&c\end{bmatrix} = a \cdot \left( {b \times c} \right)$ on the left side of the equation
$\left( {a \times b} \right) \cdot \left( {\left( {b \times c} \right) \times \left( {c \times a} \right)} \right) = \lambda {\begin{bmatrix}a&b&c\end{bmatrix}^2}$
Now applying $\left( {a \times b} \right) \times \left( {c \times d} \right) = \begin{bmatrix}a&b&d\end{bmatrix}c - \begin{bmatrix}a&b&c\end{bmatrix}d$ in $\left( {b \times c} \right) \times \left( {c \times a} \right)$
$ \Rightarrow \left( {a \times b} \right) \cdot \left( {\begin{bmatrix}b&c&a\end{bmatrix} \cdot c - \begin{bmatrix}b&c&c\end{bmatrix} \cdot a} \right) = \lambda {\begin{bmatrix}a&b&c\end{bmatrix}^2}$
Apply the formula $\begin{bmatrix}a&a&b\end{bmatrix} = \begin{bmatrix}a&b&b\end{bmatrix} = \begin{bmatrix}a&c&c\end{bmatrix} = 0$
$ \Rightarrow \left( {a \times b} \right) \cdot \left( {\begin{bmatrix}b&c&a\end{bmatrix} \cdot c - 0} \right) = \lambda {\begin{bmatrix}a&b&c\end{bmatrix}^2}$
Apply the formula $a \cdot \left( {b \times c} \right) = \left( {b \times c} \right) \cdot a$
$ \Rightarrow \left( {a \times b} \right) \cdot c\begin{bmatrix}b&c&a\end{bmatrix} = \lambda {\begin{bmatrix}a&b&c\end{bmatrix}^2}$
$ \Rightarrow \left( {\left( {a \times b} \right) \cdot c} \right)\begin{bmatrix}b&c&a\end{bmatrix} = \lambda {\begin{bmatrix}a&b&c\end{bmatrix}^2}$
Apply the formulas $\begin{bmatrix}a&b&c\end{bmatrix} = a \cdot \left( {b \times c} \right)$ and $\begin{bmatrix}a&b&c\end{bmatrix} = \begin{bmatrix}b&c&a\end{bmatrix} = \begin{bmatrix}c&a&b\end{bmatrix}$
$ \Rightarrow \begin{bmatrix}a&b&c\end{bmatrix}\begin{bmatrix}a&b&c\end{bmatrix} = \lambda {\begin{bmatrix}a&b&c\end{bmatrix}^2}$
$ \Rightarrow {\begin{bmatrix}a&b&c\end{bmatrix}^2} = \lambda {\begin{bmatrix}a&b&c\end{bmatrix}^2}$
Cancel out ${\begin{bmatrix}a&b&c\end{bmatrix}^2}$
$ \Rightarrow \lambda = 1$
Option ‘A’ is correct
Note: Vector product and cross product can be confusing at times but they mean the same.
Cross Product: We calculate the cross product of two vectors using determinant notation. A $2 \times 2$ determinant is defined by. $\begin{vmatrix} a_1 & b_ 1 \\ a_2 & b_2\end{vmatrix} = a_1 b_2 − b_1 a_2$.
Vector Product: It is the product of the magnitude of the vectors and the sine of the angle between them, $a \times b =|a| |b| \sin \theta$.
Recently Updated Pages
Geometry of Complex Numbers – Topics, Reception, Audience and Related Readings

JEE Main 2021 July 25 Shift 1 Question Paper with Answer Key

JEE Main 2021 July 22 Shift 2 Question Paper with Answer Key

JEE Atomic Structure and Chemical Bonding important Concepts and Tips

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

Chemical Properties of Hydrogen - Important Concepts for JEE Exam Preparation

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation

Displacement-Time Graph and Velocity-Time Graph for JEE

Degree of Dissociation and Its Formula With Solved Example for JEE

Free Radical Substitution Mechanism of Alkanes for JEE Main 2025

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

JEE Advanced 2025: Dates, Registration, Syllabus, Eligibility Criteria and More

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

JEE Advanced 2025 Notes

JEE Main 2025: Conversion of Galvanometer Into Ammeter And Voltmeter in Physics

Learn About Angle Of Deviation In Prism: JEE Main Physics 2025
