
If an ideal gas compressed during isothermal process then:-
A) no work is done against gas
B) heat is rejected by gas
C) it's internal energy will increase
D) pressure does not change.
Answer
163.2k+ views
Hint:
The ideal gas law establishes a mathematical relationship between a gas's pressure, volume, and temperature. \[PV = nRT\] Here P is for pressure, V is for volume, n is for moles of gas, R is for the gas constant, and T is for temperature. This is how the ideal gas law is expressed. Temperature has only one function, which is internal energy.
Complete step by step solution:
A mathematical relationship between a gas's pressure, volume, and temperature is known as the ideal gas law. The ideal gas law is stated as \[PV = nRT\] , where P is the pressure, V is the volume, n is the number of moles of gas, R is the gas constant, and T is the temperature. When the situation is isothermal, which means that the temperature is constant then $PV = {\text{constant}}$.
In an isothermal process, the change in temperature is zero.
According to the first law of thermodynamics, the change in internal energy is the function only of temperature.
hence, \[\vartriangle U = f\left( T \right)\]
If temperature is constant then △U=0.
Now, \[\vartriangle Q = \vartriangle U + W\]
\[ \Rightarrow \vartriangle Q = W\]
For isothermal process, \[W = \smallint PdV\]
because compression is occurring then we can say that \[dV < 0\].
\[\therefore W < 0\] hence, \[\vartriangle Q < 0\;\]. Therefore we can say that heat is rejected from the system.
Option B is the correct
Therefore, option (B) is the correct option.
Note:
An isothermal process is one in which the system's temperature stays constant. A system's overall energy content is constant. Although energy can be moved between systems, the overall amount is constant. The change in internal energy is therefore solely dependent on temperature, as stated by the first law of thermodynamics.
The ideal gas law establishes a mathematical relationship between a gas's pressure, volume, and temperature. \[PV = nRT\] Here P is for pressure, V is for volume, n is for moles of gas, R is for the gas constant, and T is for temperature. This is how the ideal gas law is expressed. Temperature has only one function, which is internal energy.
Complete step by step solution:
A mathematical relationship between a gas's pressure, volume, and temperature is known as the ideal gas law. The ideal gas law is stated as \[PV = nRT\] , where P is the pressure, V is the volume, n is the number of moles of gas, R is the gas constant, and T is the temperature. When the situation is isothermal, which means that the temperature is constant then $PV = {\text{constant}}$.
In an isothermal process, the change in temperature is zero.
According to the first law of thermodynamics, the change in internal energy is the function only of temperature.
hence, \[\vartriangle U = f\left( T \right)\]
If temperature is constant then △U=0.
Now, \[\vartriangle Q = \vartriangle U + W\]
\[ \Rightarrow \vartriangle Q = W\]
For isothermal process, \[W = \smallint PdV\]
because compression is occurring then we can say that \[dV < 0\].
\[\therefore W < 0\] hence, \[\vartriangle Q < 0\;\]. Therefore we can say that heat is rejected from the system.
Option B is the correct
Therefore, option (B) is the correct option.
Note:
An isothermal process is one in which the system's temperature stays constant. A system's overall energy content is constant. Although energy can be moved between systems, the overall amount is constant. The change in internal energy is therefore solely dependent on temperature, as stated by the first law of thermodynamics.
Recently Updated Pages
JEE Main 2021 July 25 Shift 1 Question Paper with Answer Key

JEE Main 2021 July 22 Shift 2 Question Paper with Answer Key

JEE Main 2025 Session 2: Exam Date, Admit Card, Syllabus, & More

JEE Atomic Structure and Chemical Bonding important Concepts and Tips

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

JEE Electricity and Magnetism Important Concepts and Tips for Exam Preparation

Trending doubts
Degree of Dissociation and Its Formula With Solved Example for JEE

Charging and Discharging of Capacitor

Instantaneous Velocity - Formula based Examples for JEE

JEE Main Chemistry Question Paper with Answer Keys and Solutions

JEE Main Reservation Criteria 2025: SC, ST, EWS, and PwD Candidates

What is Normality in Chemistry?

Other Pages
Total MBBS Seats in India 2025: Government College Seat Matrix

NEET Total Marks 2025: Important Information and Key Updates

Neet Cut Off 2025 for MBBS in Tamilnadu: AIQ & State Quota Analysis

Karnataka NEET Cut off 2025 - Category Wise Cut Off Marks

NEET Marks vs Rank 2024|How to Calculate?

NEET 2025: All Major Changes in Application Process, Pattern and More
