
If $\alpha $ and $\beta $, $\alpha $ and $\gamma $, $\alpha $ and $\delta $ are the roots of the equations $a{x^2} + 2bx + c = 0$, $2b{x^2} + cx + a = 0$ and $c{x^2} + ax + 2b = 0$ respectively, where $a,b,c$ are positive real numbers, then $\alpha + {\alpha ^2} = $
A. $ - 1$
B. $0$
C. $abc$
D. $a + 2b + c$
E. $abc$
Answer
163.5k+ views
Hint: Use the fact that $\alpha $ is a root for all the equations. Substitute $x = \alpha $ in all the equations and all three equations to get a single equation. Write the obtained equation as a product of two factors and use the fact that $a,b,c$ are positive real numbers.
Formula used: If $\phi $ is a root of the polynomial $f(x) = a{x^2} + bx + c$, then $f(\phi ) = a{\phi ^2} + b\phi + c = 0$
Complete step-by-step solution:
Let $f(x) = a{\alpha ^2} + 2b\alpha + c$, $g(x) = 2b{\alpha ^2} + c\alpha + a$ and $h(x) = c{\alpha ^2} + a\alpha + 2b$
Since $\alpha $ is a root for all the equations, $f(\alpha ) = 0$, $g(\alpha ) = 0$ and $h(\alpha ) = 0$
$a{\alpha ^2} + 2b\alpha + c = 0$
\[2b{\alpha ^2} + c\alpha + a = 0\]
$c{\alpha ^2} + a\alpha + 2b = 0$
Adding the three equations above we get,
$a{\alpha ^2} + 2b\alpha + c + 2b{\alpha ^2} + c\alpha + a + c{\alpha ^2} + a\alpha + 2b = 0$
$\left( {a + 2b + c} \right)\left( {{\alpha ^2} + \alpha + 1} \right) = 0$
$a + 2b + c \ne 0$. Therefore,
\[{\alpha ^2} + \alpha + 1 = 0\]
${\alpha ^2} + \alpha = - 1$
Therefore, the correct answer is Option A. $ - 1$.
Note: If three numbers are positive numbers then their sum must also be a positive number and therefore, they cannot be 0. That is why $a + 2b + c \ne 0$. Alternatively, we can say the same by writing three inequalities and adding them as follows: $a > 0$, $2b > 0$, $c > 0$. Adding the three inequalities we get $a + 2b + c > 0$.
Formula used: If $\phi $ is a root of the polynomial $f(x) = a{x^2} + bx + c$, then $f(\phi ) = a{\phi ^2} + b\phi + c = 0$
Complete step-by-step solution:
Let $f(x) = a{\alpha ^2} + 2b\alpha + c$, $g(x) = 2b{\alpha ^2} + c\alpha + a$ and $h(x) = c{\alpha ^2} + a\alpha + 2b$
Since $\alpha $ is a root for all the equations, $f(\alpha ) = 0$, $g(\alpha ) = 0$ and $h(\alpha ) = 0$
$a{\alpha ^2} + 2b\alpha + c = 0$
\[2b{\alpha ^2} + c\alpha + a = 0\]
$c{\alpha ^2} + a\alpha + 2b = 0$
Adding the three equations above we get,
$a{\alpha ^2} + 2b\alpha + c + 2b{\alpha ^2} + c\alpha + a + c{\alpha ^2} + a\alpha + 2b = 0$
$\left( {a + 2b + c} \right)\left( {{\alpha ^2} + \alpha + 1} \right) = 0$
$a + 2b + c \ne 0$. Therefore,
\[{\alpha ^2} + \alpha + 1 = 0\]
${\alpha ^2} + \alpha = - 1$
Therefore, the correct answer is Option A. $ - 1$.
Note: If three numbers are positive numbers then their sum must also be a positive number and therefore, they cannot be 0. That is why $a + 2b + c \ne 0$. Alternatively, we can say the same by writing three inequalities and adding them as follows: $a > 0$, $2b > 0$, $c > 0$. Adding the three inequalities we get $a + 2b + c > 0$.
Recently Updated Pages
Trigonometry Formulas: Complete List, Table, and Quick Revision

Difference Between Distance and Displacement: JEE Main 2024

IIT Full Form

Uniform Acceleration - Definition, Equation, Examples, and FAQs

Difference Between Metals and Non-Metals: JEE Main 2024

Newton’s Laws of Motion – Definition, Principles, and Examples

Trending doubts
JEE Main Marks Vs Percentile Vs Rank 2025: Calculate Percentile Using Marks

JEE Mains 2025 Cutoff: Expected and Category-Wise Qualifying Marks for NITs, IIITs, and GFTIs

JoSAA JEE Main & Advanced 2025 Counselling: Registration Dates, Documents, Fees, Seat Allotment & Cut‑offs

NIT Cutoff Percentile for 2025

JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

JEE Main Syllabus 2025 (Updated)

Other Pages
NCERT Solutions for Class 10 Maths Chapter 13 Statistics

NCERT Solutions for Class 10 Maths Chapter 11 Areas Related To Circles

NCERT Solutions for Class 10 Maths Chapter 12 Surface Area and Volume

NCERT Solutions for Class 10 Maths Chapter 14 Probability

NCERT Solutions for Class 10 Maths In Hindi Chapter 15 Probability

Total MBBS Seats in India 2025: Government and Private Medical Colleges
