
If $\alpha $ and $\beta $, $\alpha $ and $\gamma $, $\alpha $ and $\delta $ are the roots of the equations $a{x^2} + 2bx + c = 0$, $2b{x^2} + cx + a = 0$ and $c{x^2} + ax + 2b = 0$ respectively, where $a,b,c$ are positive real numbers, then $\alpha + {\alpha ^2} = $
A. $ - 1$
B. $0$
C. $abc$
D. $a + 2b + c$
E. $abc$
Answer
232.8k+ views
Hint: Use the fact that $\alpha $ is a root for all the equations. Substitute $x = \alpha $ in all the equations and all three equations to get a single equation. Write the obtained equation as a product of two factors and use the fact that $a,b,c$ are positive real numbers.
Formula used: If $\phi $ is a root of the polynomial $f(x) = a{x^2} + bx + c$, then $f(\phi ) = a{\phi ^2} + b\phi + c = 0$
Complete step-by-step solution:
Let $f(x) = a{\alpha ^2} + 2b\alpha + c$, $g(x) = 2b{\alpha ^2} + c\alpha + a$ and $h(x) = c{\alpha ^2} + a\alpha + 2b$
Since $\alpha $ is a root for all the equations, $f(\alpha ) = 0$, $g(\alpha ) = 0$ and $h(\alpha ) = 0$
$a{\alpha ^2} + 2b\alpha + c = 0$
\[2b{\alpha ^2} + c\alpha + a = 0\]
$c{\alpha ^2} + a\alpha + 2b = 0$
Adding the three equations above we get,
$a{\alpha ^2} + 2b\alpha + c + 2b{\alpha ^2} + c\alpha + a + c{\alpha ^2} + a\alpha + 2b = 0$
$\left( {a + 2b + c} \right)\left( {{\alpha ^2} + \alpha + 1} \right) = 0$
$a + 2b + c \ne 0$. Therefore,
\[{\alpha ^2} + \alpha + 1 = 0\]
${\alpha ^2} + \alpha = - 1$
Therefore, the correct answer is Option A. $ - 1$.
Note: If three numbers are positive numbers then their sum must also be a positive number and therefore, they cannot be 0. That is why $a + 2b + c \ne 0$. Alternatively, we can say the same by writing three inequalities and adding them as follows: $a > 0$, $2b > 0$, $c > 0$. Adding the three inequalities we get $a + 2b + c > 0$.
Formula used: If $\phi $ is a root of the polynomial $f(x) = a{x^2} + bx + c$, then $f(\phi ) = a{\phi ^2} + b\phi + c = 0$
Complete step-by-step solution:
Let $f(x) = a{\alpha ^2} + 2b\alpha + c$, $g(x) = 2b{\alpha ^2} + c\alpha + a$ and $h(x) = c{\alpha ^2} + a\alpha + 2b$
Since $\alpha $ is a root for all the equations, $f(\alpha ) = 0$, $g(\alpha ) = 0$ and $h(\alpha ) = 0$
$a{\alpha ^2} + 2b\alpha + c = 0$
\[2b{\alpha ^2} + c\alpha + a = 0\]
$c{\alpha ^2} + a\alpha + 2b = 0$
Adding the three equations above we get,
$a{\alpha ^2} + 2b\alpha + c + 2b{\alpha ^2} + c\alpha + a + c{\alpha ^2} + a\alpha + 2b = 0$
$\left( {a + 2b + c} \right)\left( {{\alpha ^2} + \alpha + 1} \right) = 0$
$a + 2b + c \ne 0$. Therefore,
\[{\alpha ^2} + \alpha + 1 = 0\]
${\alpha ^2} + \alpha = - 1$
Therefore, the correct answer is Option A. $ - 1$.
Note: If three numbers are positive numbers then their sum must also be a positive number and therefore, they cannot be 0. That is why $a + 2b + c \ne 0$. Alternatively, we can say the same by writing three inequalities and adding them as follows: $a > 0$, $2b > 0$, $c > 0$. Adding the three inequalities we get $a + 2b + c > 0$.
Recently Updated Pages
Mutually Exclusive vs Independent Events: Key Differences Explained

Area vs Volume: Key Differences Explained for Students

Area of an Octagon Formula Explained Simply

Absolute Pressure Formula Explained: Key Equation & Examples

Central Angle of a Circle Formula Explained Quickly

Difference Between Vapor and Gas: JEE Main 2026

Trending doubts
JEE Main 2026: Session 2 Registration Open, City Intimation Slip, Exam Dates, Syllabus & Eligibility

JEE Main 2026 Jan 21 Shift 1 Question Papers with Solutions & Answer Keys – Detailed Day 1 Analysis

JEE Main Marks vs Percentile 2026: Calculate Percentile and Rank Using Marks

JEE Main 2026 Jan 22 Shift 1 Today Paper Live Analysis With Detailed Solutions

JEE Mains 2026 January 21 Shift 2 Question Paper with Solutions PDF - Complete Exam Analysis

JEE Main 2026 Jan 22 Shift 2 Today Paper Live Analysis With Detailed Solutions

Other Pages
Pregnancy Week and Due Date Calculator: Find How Far Along You Are

NCERT Solutions For Class 10 Maths Chapter 11 Areas Related to Circles (2025-26)

NCERT Solutions For Class 10 Maths Chapter 12 Surface Areas and Volumes (2025-26)

All Mensuration Formulas with Examples and Quick Revision

Complete List of Class 10 Maths Formulas (Chapterwise)

NCERT Solutions for Class 10 Maths Chapter 13 Statistics

