
If $A\left( {\cos \alpha ,\sin \alpha } \right),B\left( {\sin \alpha , - \cos \alpha } \right),C\left( {1,2} \right)$ are the vertices of a $\Delta ABC$, then as a $\alpha $ varies, Find the locus of its centroid.
Answer
232.8k+ views
Hint: By using the formula of centroid, we will find the centroid of $\Delta ABC$. Then assign $x$ of abscissa of centroid and assign $y$ of ordinate of centroid. Then make an equation that does not contain $\alpha $.
Formula Used:
The centroid of a triangle $ = \left( {\dfrac{{{x_1} + {x_2} + {x_3}}}{3},\dfrac{{{y_1} + {y_2} + {y_3}}}{3}} \right)$
Here, $({x_1},{\rm{ }}{y_1}),({x_2},{\rm{ }}{y_2}),({x_3},{\rm{ }}{y_3})$are vertices of the triangle.
$\begin{array}{l}{\left( {a + b} \right)^2} = {a^2} + {b^2} + 2ab\\{\left( {a - b} \right)^2} = {a^2} + {b^2} - 2ab\end{array}$
Complete step by step solution:
Let $\Delta ABC$ has the centroid $\left( {x,y} \right)$.
So, we can write $x = \dfrac{{\cos \alpha + \sin \alpha + 1}}{3}$ and $y = \dfrac{{\sin \alpha - \cos \alpha + 2}}{3}$
Simplify the equation$x = \dfrac{{\cos \alpha + \sin \alpha + 1}}{3}$.
$\begin{array}{l}3x = \cos \alpha + \sin \alpha + 1\\3x - 1 = \cos \alpha + \sin \alpha \end{array}$ …$\left( 1 \right)$
Simplify the equation $y = \dfrac{{\sin \alpha - \cos \alpha + 2}}{3}$.
$\begin{array}{l}3y = \sin \alpha - \cos \alpha + 2\\3y - 2 = \sin \alpha - \cos \alpha \end{array}$ dfrac …$\left( 2 \right)$
Square equation $\left( 1 \right)$ and $\left( 2 \right)$, add them up.
${\left( {3x - 1} \right)^2} + {\left( {3y - 2} \right)^2} = {\left( {\cos \alpha + \sin \alpha } \right)^2} + {\left( {\sin \alpha - \cos \alpha } \right)^2}$
Simplify the equation
$\begin{array}{l}9{x^2} - 6x + 1 + 9{y^2} - 12y + 4 = {\sin ^2}\alpha + {\cos ^2}\alpha + 2\cos \alpha \sin \alpha + {\sin ^2}\alpha + {\cos ^2}\alpha - 2\cos \alpha \sin \alpha \\9{x^2} + 9{y^2} - 6x - 12y + 5 = 1 + 1\\9{x^2} + 9{y^2} - 6x - 12y + 5 = 2\\9{x^2} + 9{y^2} - 6x - 12y + 3 = 0\end{array}$
Divide the equation by $3$.
$\begin{array}{l}\dfrac{{9{x^2} + 9{y^2} - 6x - 12y + 3}}{3} = 0\\3{x^2} + 3{y^2} - 2x - 4y + 1 = 0\end{array}$
The locus of centroid of $\Delta ABC$ is $3{x^2} + 3{y^2} - 2x - 4y + 1 = 0$
Note: Very often mistake is done here, ${\left( {\cos \alpha + \sin \alpha } \right)^2} + {\left( {\sin \alpha - \cos \alpha } \right)^2}$ is simplified as ${\left( {\sin \alpha } \right)^2} + {\left( {\cos \alpha } \right)^2} = 1$ which is wrong. We need to expand the brackets.
Formula Used:
The centroid of a triangle $ = \left( {\dfrac{{{x_1} + {x_2} + {x_3}}}{3},\dfrac{{{y_1} + {y_2} + {y_3}}}{3}} \right)$
Here, $({x_1},{\rm{ }}{y_1}),({x_2},{\rm{ }}{y_2}),({x_3},{\rm{ }}{y_3})$are vertices of the triangle.
$\begin{array}{l}{\left( {a + b} \right)^2} = {a^2} + {b^2} + 2ab\\{\left( {a - b} \right)^2} = {a^2} + {b^2} - 2ab\end{array}$
Complete step by step solution:
Let $\Delta ABC$ has the centroid $\left( {x,y} \right)$.
So, we can write $x = \dfrac{{\cos \alpha + \sin \alpha + 1}}{3}$ and $y = \dfrac{{\sin \alpha - \cos \alpha + 2}}{3}$
Simplify the equation$x = \dfrac{{\cos \alpha + \sin \alpha + 1}}{3}$.
$\begin{array}{l}3x = \cos \alpha + \sin \alpha + 1\\3x - 1 = \cos \alpha + \sin \alpha \end{array}$ …$\left( 1 \right)$
Simplify the equation $y = \dfrac{{\sin \alpha - \cos \alpha + 2}}{3}$.
$\begin{array}{l}3y = \sin \alpha - \cos \alpha + 2\\3y - 2 = \sin \alpha - \cos \alpha \end{array}$ dfrac …$\left( 2 \right)$
Square equation $\left( 1 \right)$ and $\left( 2 \right)$, add them up.
${\left( {3x - 1} \right)^2} + {\left( {3y - 2} \right)^2} = {\left( {\cos \alpha + \sin \alpha } \right)^2} + {\left( {\sin \alpha - \cos \alpha } \right)^2}$
Simplify the equation
$\begin{array}{l}9{x^2} - 6x + 1 + 9{y^2} - 12y + 4 = {\sin ^2}\alpha + {\cos ^2}\alpha + 2\cos \alpha \sin \alpha + {\sin ^2}\alpha + {\cos ^2}\alpha - 2\cos \alpha \sin \alpha \\9{x^2} + 9{y^2} - 6x - 12y + 5 = 1 + 1\\9{x^2} + 9{y^2} - 6x - 12y + 5 = 2\\9{x^2} + 9{y^2} - 6x - 12y + 3 = 0\end{array}$
Divide the equation by $3$.
$\begin{array}{l}\dfrac{{9{x^2} + 9{y^2} - 6x - 12y + 3}}{3} = 0\\3{x^2} + 3{y^2} - 2x - 4y + 1 = 0\end{array}$
The locus of centroid of $\Delta ABC$ is $3{x^2} + 3{y^2} - 2x - 4y + 1 = 0$
Note: Very often mistake is done here, ${\left( {\cos \alpha + \sin \alpha } \right)^2} + {\left( {\sin \alpha - \cos \alpha } \right)^2}$ is simplified as ${\left( {\sin \alpha } \right)^2} + {\left( {\cos \alpha } \right)^2} = 1$ which is wrong. We need to expand the brackets.
Recently Updated Pages
Geometry of Complex Numbers Explained

JEE General Topics in Chemistry Important Concepts and Tips

JEE Extractive Metallurgy Important Concepts and Tips for Exam Preparation

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

JEE Atomic Structure and Chemical Bonding important Concepts and Tips

Electricity and Magnetism Explained: Key Concepts & Applications

Trending doubts
JEE Main 2026: Session 2 Registration Open, City Intimation Slip, Exam Dates, Syllabus & Eligibility

JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

JEE Main Marking Scheme 2026- Paper-Wise Marks Distribution and Negative Marking Details

Understanding the Angle of Deviation in a Prism

Hybridisation in Chemistry – Concept, Types & Applications

How to Convert a Galvanometer into an Ammeter or Voltmeter

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

NCERT Solutions For Class 11 Maths Chapter 12 Limits and Derivatives (2025-26)

NCERT Solutions For Class 11 Maths Chapter 10 Conic Sections (2025-26)

Understanding the Electric Field of a Uniformly Charged Ring

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

Derivation of Equation of Trajectory Explained for Students

