
If \[a,b\] and \[{\rm{c}}\] are unit coplanar vectors then the scalar triple product \[[2a - b2b - c2c - a]\] is equal to
A. 0
B. \[1\]
C. \[ - \sqrt 3 \]
D. \[\sqrt 3 \]
Answer
216.3k+ views
Hint: A vector is a quantity with both magnitude and direction. A unit vector is one with a magnitude of one. It is also referred to as the Direction Vector. The symbol (∧) sometimes known as a cap or hat. It is used to represent the Unit Vector. It is provided by \[\hat a = \frac{a}{{|a|}}\]
Formula Used:The dot product of two vectors is
\[{\bf{a}}.\left( {{\bf{b}} + {\bf{c}}} \right) = {\bf{a}}.{\bf{b}} + {\bf{a}}.{\bf{c}}\]
Complete step by step solution:There are two approaches to define the dot product: algebraically and geometrically. The dot product is defined algebraically as the sum of the products of the corresponding elements of the two number sequences.
We have been given that If \[a,b,c\] and \[c\] are unit coplanar vectors.
The scalar triple product
\[[2a - b,2b - c,2c - a]\]
Given that “\[a,{\rm{ }}b,{\rm{ }}c\]” are unit coplanar vectors
Therefore, that implies
\[\left[ {abc} \right] = 0\]-- (1)
Because \[[abc] = a.\{ b \times c\} \] and since \[{\rm{b}}\] and \[{\rm{c}}\] are unit coplanar vectors\[b \times c = 1\]
Therefore now \[[2a - b2b - c2c - a]\]
Now according to the data, the equation becomes,
\[ = (2a - b) \cdot \{ (2b - c) \times (2c - a)\} \]
Now, on computing the cross product, we obtain
\[ = (2a - b) \cdot \{ 4(b \times c) - 2(b \times a) + (c \times a)\} \]
Now, we have to simplify the above equation, we get
\[ = 8(a \cdot (b \times c)) - (b \cdot (c \times a))\]
Let’s further simplify the above equation to make it less complicated:
\[ = 8[abc] - [abc]\]
Now, we have to subtract the obtained equation, we get
\[ = 7[abc]\]
As “\[a,{\rm{ }}b,{\rm{ }}c\]” are unit coplanar vectors, it becomes
\[ = 0\]
Therefore, the scalar triple product \[[2a - b2b - c2c - a]\] is equal to \[0\].
Option ‘A’ is correct
Note: Vector is a quantity with both magnitude and direction. A unit vector is one with a magnitude of one. Dot product and cross product is not the same thing. Concentrate your efforts on the calculation part. Remember that the magnitude of a unit vector is always one.
Formula Used:The dot product of two vectors is
\[{\bf{a}}.\left( {{\bf{b}} + {\bf{c}}} \right) = {\bf{a}}.{\bf{b}} + {\bf{a}}.{\bf{c}}\]
Complete step by step solution:There are two approaches to define the dot product: algebraically and geometrically. The dot product is defined algebraically as the sum of the products of the corresponding elements of the two number sequences.
We have been given that If \[a,b,c\] and \[c\] are unit coplanar vectors.
The scalar triple product
\[[2a - b,2b - c,2c - a]\]
Given that “\[a,{\rm{ }}b,{\rm{ }}c\]” are unit coplanar vectors
Therefore, that implies
\[\left[ {abc} \right] = 0\]-- (1)
Because \[[abc] = a.\{ b \times c\} \] and since \[{\rm{b}}\] and \[{\rm{c}}\] are unit coplanar vectors\[b \times c = 1\]
Therefore now \[[2a - b2b - c2c - a]\]
Now according to the data, the equation becomes,
\[ = (2a - b) \cdot \{ (2b - c) \times (2c - a)\} \]
Now, on computing the cross product, we obtain
\[ = (2a - b) \cdot \{ 4(b \times c) - 2(b \times a) + (c \times a)\} \]
Now, we have to simplify the above equation, we get
\[ = 8(a \cdot (b \times c)) - (b \cdot (c \times a))\]
Let’s further simplify the above equation to make it less complicated:
\[ = 8[abc] - [abc]\]
Now, we have to subtract the obtained equation, we get
\[ = 7[abc]\]
As “\[a,{\rm{ }}b,{\rm{ }}c\]” are unit coplanar vectors, it becomes
\[ = 0\]
Therefore, the scalar triple product \[[2a - b2b - c2c - a]\] is equal to \[0\].
Option ‘A’ is correct
Note: Vector is a quantity with both magnitude and direction. A unit vector is one with a magnitude of one. Dot product and cross product is not the same thing. Concentrate your efforts on the calculation part. Remember that the magnitude of a unit vector is always one.
Recently Updated Pages
JEE Atomic Structure and Chemical Bonding important Concepts and Tips

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

Electricity and Magnetism Explained: Key Concepts & Applications

Chemical Properties of Hydrogen - Important Concepts for JEE Exam Preparation

JEE Energetics Important Concepts and Tips for Exam Preparation

JEE Isolation, Preparation and Properties of Non-metals Important Concepts and Tips for Exam Preparation

Trending doubts
JEE Main 2026: Application Form Open, Exam Dates, Syllabus, Eligibility & Question Papers

Derivation of Equation of Trajectory Explained for Students

Hybridisation in Chemistry – Concept, Types & Applications

Understanding the Angle of Deviation in a Prism

Understanding Collisions: Types and Examples for Students

How to Convert a Galvanometer into an Ammeter or Voltmeter

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Ideal and Non-Ideal Solutions Explained for Class 12 Chemistry

Degree of Dissociation: Meaning, Formula, Calculation & Uses

Understanding Electromagnetic Waves and Their Importance

Understanding the Electric Field of a Uniformly Charged Ring

Understanding Average and RMS Value in Electrical Circuits

