
If a,b and c are unit vectors then $\left| a-b{{|}^{2}} \right.+|b-c{{|}^{2}}+|c-a{{|}^{2}}$ does not exceed
A. 4
B. 9
C. 8
D. 6
Answer
164.4k+ views
Hint: We are given a, b, and c as unit vectors, and we must find the value that the given equation does not exceed. A unit vector is a vector with a magnitude of one. To answer this question, we use the whole square formula, and we get our desired answer by entering the values into the formulas and solving the equations.
Formula Used:
${{(a-b)}^{2}}+{{(b-c)}^{2}}+{{(c-a)}^{2}}=2({{a}^{2}}+{{b}^{2}}+{{c}^{2}})-2(a.b+b.c+c.a)$
Complete step by step solution:
We are given that a , b and c are the unit vectors , then
$\left| a-b{{|}^{2}} \right.+|b-c{{|}^{2}}+|c-a{{|}^{2}}$-------------------------(1)
We know the formula of ${{(a-b)}^{2}}+{{(b-c)}^{2}}+{{(c-a)}^{2}}=2({{a}^{2}}+{{b}^{2}}+{{c}^{2}})-2(a.b+b.c+c.a)$
Put the above values in equation (1) and we get
$\left| a-b{{|}^{2}} \right.+|b-c{{|}^{2}}+|c-a{{|}^{2}}$ = $2({{a}^{2}}+{{b}^{2}}+{{c}^{2}})-2(a.b+b.c+c.a)$
By putting the values in above equation, we get
$2({{a}^{2}}+{{b}^{2}}+{{c}^{2}})-2(a.b+b.c+c.a)$ = 2$\times 3 – 2 (a.b + b.c + c.a )$ ----------- (2)
By simplifying $2 (a.b + b.c + c.a ) = \left\{ {{(a+b+c)}^{2}}-{{a}^{2}}-{{b}^{2}}-{{c}^{2}} \right\}$
By putting the values in equation (2), we get
$2({{a}^{2}}+{{b}^{2}}+{{c}^{2}})-2(a.b+b.c+c.a)$ = 6 – $\left\{ {{(a+b+c)}^{2}}-{{a}^{2}}-{{b}^{2}}-{{c}^{2}} \right\}$
By solving the above equation, we get 9 - $|a+b+c{{|}^{2}}\le 9$
Hence, value of $\left| a-b{{|}^{2}} \right.+|b-c{{|}^{2}}+|c-a{{|}^{2}}$ does not exceed 9
Option ‘B’ is correct
Note: Vector units have both direction and magnitude. However, sometimes one is interested only in direction and not the magnitude. Vectors are often considered unit length. These unit vectors are generally used to represent direction, with a scalar coefficient providing the magnitude.
Formula Used:
${{(a-b)}^{2}}+{{(b-c)}^{2}}+{{(c-a)}^{2}}=2({{a}^{2}}+{{b}^{2}}+{{c}^{2}})-2(a.b+b.c+c.a)$
Complete step by step solution:
We are given that a , b and c are the unit vectors , then
$\left| a-b{{|}^{2}} \right.+|b-c{{|}^{2}}+|c-a{{|}^{2}}$-------------------------(1)
We know the formula of ${{(a-b)}^{2}}+{{(b-c)}^{2}}+{{(c-a)}^{2}}=2({{a}^{2}}+{{b}^{2}}+{{c}^{2}})-2(a.b+b.c+c.a)$
Put the above values in equation (1) and we get
$\left| a-b{{|}^{2}} \right.+|b-c{{|}^{2}}+|c-a{{|}^{2}}$ = $2({{a}^{2}}+{{b}^{2}}+{{c}^{2}})-2(a.b+b.c+c.a)$
By putting the values in above equation, we get
$2({{a}^{2}}+{{b}^{2}}+{{c}^{2}})-2(a.b+b.c+c.a)$ = 2$\times 3 – 2 (a.b + b.c + c.a )$ ----------- (2)
By simplifying $2 (a.b + b.c + c.a ) = \left\{ {{(a+b+c)}^{2}}-{{a}^{2}}-{{b}^{2}}-{{c}^{2}} \right\}$
By putting the values in equation (2), we get
$2({{a}^{2}}+{{b}^{2}}+{{c}^{2}})-2(a.b+b.c+c.a)$ = 6 – $\left\{ {{(a+b+c)}^{2}}-{{a}^{2}}-{{b}^{2}}-{{c}^{2}} \right\}$
By solving the above equation, we get 9 - $|a+b+c{{|}^{2}}\le 9$
Hence, value of $\left| a-b{{|}^{2}} \right.+|b-c{{|}^{2}}+|c-a{{|}^{2}}$ does not exceed 9
Option ‘B’ is correct
Note: Vector units have both direction and magnitude. However, sometimes one is interested only in direction and not the magnitude. Vectors are often considered unit length. These unit vectors are generally used to represent direction, with a scalar coefficient providing the magnitude.
Recently Updated Pages
Geometry of Complex Numbers – Topics, Reception, Audience and Related Readings

JEE Main 2021 July 25 Shift 1 Question Paper with Answer Key

JEE Main 2021 July 22 Shift 2 Question Paper with Answer Key

JEE Atomic Structure and Chemical Bonding important Concepts and Tips

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

JEE Electricity and Magnetism Important Concepts and Tips for Exam Preparation

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

Atomic Structure - Electrons, Protons, Neutrons and Atomic Models

Displacement-Time Graph and Velocity-Time Graph for JEE

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Learn About Angle Of Deviation In Prism: JEE Main Physics 2025

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

Instantaneous Velocity - Formula based Examples for JEE

JEE Advanced 2025 Notes

JEE Main Chemistry Question Paper with Answer Keys and Solutions

Degree of Dissociation and Its Formula With Solved Example for JEE
