
If $AB = A$ and $BA = B$, then ${B^2}$ is equal to
1. $B$
2. $A$
3. $ - B$
4. ${B^3}$
Answer
218.1k+ views
Hint: In this question, we are given that $AB = A$ and $BA = B$. We have to find the value of ${B^2}$. The first step is to let the given terms A and B be the square matrices. Now, we will post multiply $B$ in the second equality condition. Then, again and again, use the given equality conditions and you’ll get the value.
Formula Used:
Let, the given equation of matrix be $PQ = P$
Pre- multiplication by $P$ will be; $P \times PQ = P \times P$
Similarly post- multiplication of $P$ is $PQ \times P = P \times P$
Complete step by step Solution:
Let, A and B are the square matrices,
Given that,
$AB = A - - - - - \left( 1 \right)$
And $BA = B - - - - - \left( 2 \right)$
Now, taking equation (2) and post multiplying both sides by $B$
$BA \times B = B \times B$
$B\left( {AB} \right) = {B^2}$
From equation (1)
$BA = {B^2}$
From equation (2)
$B = {B^2}$
It can be written as ${B^2} = B$
Hence, the correct option is 1.
Note: The key concept involved in solving this problem is the good knowledge of pre- and post-multiplication. Students must remember that if here we were asked the value of A. Then, the first step will be the pre-multiplication of A in equation (1). And again, repeating the given conditions continuously until we will get the value. Pre multiplication and post multiplication is the concept of Matrix. In the matrix we can’t change the series as we do in normal so, we follow this. Also, the first matrix must have the same number of columns just as the second matrix has rows in order to perform matrix multiplication. The number of rows in the resulting matrix equals the number of rows in the original matrix, and the number of columns equals the number of columns in the original matrix.
Formula Used:
Let, the given equation of matrix be $PQ = P$
Pre- multiplication by $P$ will be; $P \times PQ = P \times P$
Similarly post- multiplication of $P$ is $PQ \times P = P \times P$
Complete step by step Solution:
Let, A and B are the square matrices,
Given that,
$AB = A - - - - - \left( 1 \right)$
And $BA = B - - - - - \left( 2 \right)$
Now, taking equation (2) and post multiplying both sides by $B$
$BA \times B = B \times B$
$B\left( {AB} \right) = {B^2}$
From equation (1)
$BA = {B^2}$
From equation (2)
$B = {B^2}$
It can be written as ${B^2} = B$
Hence, the correct option is 1.
Note: The key concept involved in solving this problem is the good knowledge of pre- and post-multiplication. Students must remember that if here we were asked the value of A. Then, the first step will be the pre-multiplication of A in equation (1). And again, repeating the given conditions continuously until we will get the value. Pre multiplication and post multiplication is the concept of Matrix. In the matrix we can’t change the series as we do in normal so, we follow this. Also, the first matrix must have the same number of columns just as the second matrix has rows in order to perform matrix multiplication. The number of rows in the resulting matrix equals the number of rows in the original matrix, and the number of columns equals the number of columns in the original matrix.
Recently Updated Pages
Arithmetic, Geometric & Harmonic Progressions Explained

Cartesian Form of Vector Explained: Formula, Examples & Uses

Apparent Frequency Explained: Formula, Uses & Examples

Calorimetry: Definition, Principles & Calculations

Centrifugal Force Explained: Definition, Formula & Examples

Charge in a Magnetic Field: Definition, Formula & Examples

Trending doubts
JEE Main 2026: Application Form Open, Exam Dates, Syllabus, Eligibility & Question Papers

Derivation of Equation of Trajectory Explained for Students

Hybridisation in Chemistry – Concept, Types & Applications

Understanding the Angle of Deviation in a Prism

Understanding Collisions: Types and Examples for Students

Understanding Atomic Structure for Beginners

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

How to Convert a Galvanometer into an Ammeter or Voltmeter

Ideal and Non-Ideal Solutions Explained for Class 12 Chemistry

Degree of Dissociation: Meaning, Formula, Calculation & Uses

Understanding Electromagnetic Waves and Their Importance

Understanding Average and RMS Value in Electrical Circuits

