
If $A = \left[ {\begin{array}{*{20}{c}}
2&{ - 3}&5 \\
3&2&{ - 4} \\
1&1&{ - 2}
\end{array}} \right]$, find ${A^{ - 1}}$, using ${A^{ - 1}}$ solve the system of equations
$
2x - 3y + 5z = 11 \\
3x + 2y - 4z = 5 \\
x + y - 2z = 3 \\
$
Answer
126.6k+ views
Hint: In this question first convert the system of equation into matrix format, then apply the formula of A inverse which is ${A^{ - 1}} = \dfrac{1}{{\left| A \right|}}adj\left( A \right)$, and later on use the concept of matrix multiplication, so use these concepts to get the solution of the question.
Complete step-by-step answer:
Given system of equation are
$
2x - 3y + 5z = 11 \\
3x + 2y - 4z = 5 \\
x + y - 2z = 3 \\
$
First convert the system of equations into matrix format we have,
\[\left[ {\begin{array}{*{20}{c}}
2&{ - 3}&5 \\
3&2&{ - 4} \\
1&1&{ - 2}
\end{array}} \right]\left[ {\begin{array}{*{20}{c}}
x \\
y \\
z
\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}
{11} \\
5 \\
3
\end{array}} \right]\]
Now as we see that left most part of above equation is equal to given matrix (A)
$A = \left[ {\begin{array}{*{20}{c}}
2&{ - 3}&5 \\
3&2&{ - 4} \\
1&1&{ - 2}
\end{array}} \right]$, Let $X = \left[ {\begin{array}{*{20}{c}}
x \\
y \\
z
\end{array}} \right],{\text{ B}} = \left[ {\begin{array}{*{20}{c}}
{11} \\
5 \\
3
\end{array}} \right]$
$ \Rightarrow AX = B$
So the solution of the given system of equations is
$X = {A^{ - 1}}B$……………….. (1)
So, first calculate $A$ inverse
As we know ${A^{ - 1}} = \dfrac{1}{{\left| A \right|}}adj\left( A \right)$
Where $adj\left( A \right) = {\left[ {\begin{array}{*{20}{c}}
{{c_{11}}}&{{c_{12}}}&{{c_{13}}} \\
{{c_{21}}}&{{c_{22}}}&{{c_{23}}} \\
{{c_{31}}}&{{c_{32}}}&{{c_{33}}}
\end{array}} \right]^T}$
Where T is the transpose of matrix, so apply transpose of matrix
\[
\Rightarrow adj\left( A \right) = \left[ {\begin{array}{*{20}{c}}
{{c_{11}}}&{{c_{21}}}&{{c_{31}}} \\
{{c_{12}}}&{{c_{22}}}&{{c_{32}}} \\
{{c_{13}}}&{{c_{23}}}&{{c_{33}}}
\end{array}} \right] \\
{A^{ - 1}} = \dfrac{1}{{\left| A \right|}}adj\left( A \right) = \dfrac{1}{{\left| A \right|}}\left[ {\begin{array}{*{20}{c}}
{{c_{11}}}&{{c_{21}}}&{{c_{31}}} \\
{{c_{12}}}&{{c_{22}}}&{{c_{32}}} \\
{{c_{13}}}&{{c_{23}}}&{{c_{33}}}
\end{array}} \right]...........\left( 2 \right) \\
\]
Now, first calculate determinant of $A$
$ \Rightarrow \left| A \right| = \left| {\begin{array}{*{20}{c}}
2&{ - 3}&5 \\
3&2&{ - 4} \\
1&1&{ - 2}
\end{array}} \right|$
Now, expand the determinant
$
\Rightarrow \left| A \right| = \left| {\begin{array}{*{20}{c}}
2&{ - 3}&5 \\
3&2&{ - 4} \\
1&1&{ - 2}
\end{array}} \right| = 2\left| {\begin{array}{*{20}{c}}
2&{ - 4} \\
1&{ - 2}
\end{array}} \right| - \left( { - 3} \right)\left| {\begin{array}{*{20}{c}}
3&{ - 4} \\
1&{ - 2}
\end{array}} \right| + 5\left| {\begin{array}{*{20}{c}}
3&2 \\
1&1
\end{array}} \right| \\
= 2\left( { - 4 - \left( { - 4} \right)} \right) + 3\left( { - 6 - \left( { - 4} \right)} \right) + 5\left( {3 - 2} \right) = 0 - 6 + 5 = - 1 \\
$
Now calculate $adj\left( A \right)$
$ \Rightarrow adj\left( A \right) = \left[ {\begin{array}{*{20}{c}}
{{c_{11}}}&{{c_{21}}}&{{c_{31}}} \\
{{c_{12}}}&{{c_{22}}}&{{c_{32}}} \\
{{c_{13}}}&{{c_{23}}}&{{c_{33}}}
\end{array}} \right]$
So, calculate its internal elements i.e. its cofactors
\[
{c_{11}} = + 1\left| {\begin{array}{*{20}{c}}
2&{ - 4} \\
1&{ - 2}
\end{array}} \right| = 1\left( { - 4 - \left( { - 4} \right)} \right) = 0,{\text{ }}{{\text{c}}_{21}} = - 1\left| {\begin{array}{*{20}{c}}
{ - 3}&5 \\
1&{ - 2}
\end{array}} \right| = - 1\left( {6 - 5} \right) = - 1,{\text{ }}{{\text{c}}_{31}} = + 1\left| {\begin{array}{*{20}{c}}
{ - 3}&5 \\
2&{ - 4}
\end{array}} \right| = 1\left( {12 - 10} \right) = 2 \\
{c_{12}} = - 1\left| {\begin{array}{*{20}{c}}
3&{ - 4} \\
1&{ - 2}
\end{array}} \right| = - 1\left( { - 6 - \left( { - 4} \right)} \right) = 2,{\text{ }}{{\text{c}}_{22}} = + 1\left| {\begin{array}{*{20}{c}}
2&5 \\
1&{ - 2}
\end{array}} \right| = 1\left( { - 4 - 5} \right) = - 9,{\text{ }}{{\text{c}}_{32}} = - 1\left| {\begin{array}{*{20}{c}}
2&5 \\
3&{ - 4}
\end{array}} \right| = - 1\left( { - 8 - 15} \right) = 23 \\
{c_{13}} = + 1\left| {\begin{array}{*{20}{c}}
3&2 \\
1&1
\end{array}} \right| = 1\left( {3 - 2} \right) = 1,{\text{ }}{{\text{c}}_{23}} = - 1\left| {\begin{array}{*{20}{c}}
2&{ - 3} \\
1&1
\end{array}} \right| = - 1\left( {2 + 3} \right) = - 5,{\text{ }}{{\text{c}}_{33}} = + 1\left| {\begin{array}{*{20}{c}}
2&{ - 3} \\
3&2
\end{array}} \right| = 1\left( {4 - \left( { - 9} \right)} \right) = 13 \\
\]
$ \Rightarrow adj\left( A \right) = \left[ {\begin{array}{*{20}{c}}
0&{ - 1}&2 \\
2&{ - 9}&{23} \\
1&{ - 5}&{13}
\end{array}} \right]$
Now, from equation 2
${A^{ - 1}} = \dfrac{1}{{\left| A \right|}}adj\left( A \right) = \dfrac{1}{{ - 1}}\left[ {\begin{array}{*{20}{c}}
0&{ - 1}&2 \\
2&{ - 9}&{23} \\
1&{ - 5}&{13}
\end{array}} \right]$
So, this is the required ${A^{ - 1}}$.
Now from equation 1
$ \Rightarrow X = {A^{ - 1}}B = \dfrac{1}{{ - 1}}\left[ {\begin{array}{*{20}{c}}
0&{ - 1}&2 \\
2&{ - 9}&{23} \\
1&{ - 5}&{13}
\end{array}} \right]\left[ {\begin{array}{*{20}{c}}
{11} \\
5 \\
3
\end{array}} \right]$
Now apply matrix multiplication
$ \Rightarrow X = {A^{ - 1}}B = \dfrac{1}{{ - 1}}\left[ {\begin{array}{*{20}{c}}
{0 \times 11 - 1 \times 5 + 2 \times 3} \\
{2 \times 11 - 9 \times 5 + 23 \times 3} \\
{1 \times 11 - 5 \times 5 + 13 \times 3}
\end{array}} \right] = \dfrac{1}{{ - 1}}\left[ {\begin{array}{*{20}{c}}
1 \\
{46} \\
{25}
\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}
{ - 1} \\
{ - 46} \\
{ - 25}
\end{array}} \right]$
Hence $X = \left[ {\begin{array}{*{20}{c}}
{ - 1} \\
{ - 46} \\
{ - 25}
\end{array}} \right]$
Now, $X = \left[ {\begin{array}{*{20}{c}}
x \\
y \\
z
\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}
{ - 1} \\
{ - 46} \\
{ - 25}
\end{array}} \right]$, so on comparing we have,
$x = - 1,{\text{ }}y = - 46,{\text{ }}z = - 25$
So, this is the required solution.
Note: In such types of questions convert the system of equation into matrix format in the form $AX = B$, so the solution of the system of equations is $X = {A^{ - 1}}B$ so, first calculate the determinant value of $A$ then calculate the value of ${A^{ - 1}}$ using the formula which is stated above, then apply matrix multiplication we will get the required solution of $X$.
Complete step-by-step answer:
Given system of equation are
$
2x - 3y + 5z = 11 \\
3x + 2y - 4z = 5 \\
x + y - 2z = 3 \\
$
First convert the system of equations into matrix format we have,
\[\left[ {\begin{array}{*{20}{c}}
2&{ - 3}&5 \\
3&2&{ - 4} \\
1&1&{ - 2}
\end{array}} \right]\left[ {\begin{array}{*{20}{c}}
x \\
y \\
z
\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}
{11} \\
5 \\
3
\end{array}} \right]\]
Now as we see that left most part of above equation is equal to given matrix (A)
$A = \left[ {\begin{array}{*{20}{c}}
2&{ - 3}&5 \\
3&2&{ - 4} \\
1&1&{ - 2}
\end{array}} \right]$, Let $X = \left[ {\begin{array}{*{20}{c}}
x \\
y \\
z
\end{array}} \right],{\text{ B}} = \left[ {\begin{array}{*{20}{c}}
{11} \\
5 \\
3
\end{array}} \right]$
$ \Rightarrow AX = B$
So the solution of the given system of equations is
$X = {A^{ - 1}}B$……………….. (1)
So, first calculate $A$ inverse
As we know ${A^{ - 1}} = \dfrac{1}{{\left| A \right|}}adj\left( A \right)$
Where $adj\left( A \right) = {\left[ {\begin{array}{*{20}{c}}
{{c_{11}}}&{{c_{12}}}&{{c_{13}}} \\
{{c_{21}}}&{{c_{22}}}&{{c_{23}}} \\
{{c_{31}}}&{{c_{32}}}&{{c_{33}}}
\end{array}} \right]^T}$
Where T is the transpose of matrix, so apply transpose of matrix
\[
\Rightarrow adj\left( A \right) = \left[ {\begin{array}{*{20}{c}}
{{c_{11}}}&{{c_{21}}}&{{c_{31}}} \\
{{c_{12}}}&{{c_{22}}}&{{c_{32}}} \\
{{c_{13}}}&{{c_{23}}}&{{c_{33}}}
\end{array}} \right] \\
{A^{ - 1}} = \dfrac{1}{{\left| A \right|}}adj\left( A \right) = \dfrac{1}{{\left| A \right|}}\left[ {\begin{array}{*{20}{c}}
{{c_{11}}}&{{c_{21}}}&{{c_{31}}} \\
{{c_{12}}}&{{c_{22}}}&{{c_{32}}} \\
{{c_{13}}}&{{c_{23}}}&{{c_{33}}}
\end{array}} \right]...........\left( 2 \right) \\
\]
Now, first calculate determinant of $A$
$ \Rightarrow \left| A \right| = \left| {\begin{array}{*{20}{c}}
2&{ - 3}&5 \\
3&2&{ - 4} \\
1&1&{ - 2}
\end{array}} \right|$
Now, expand the determinant
$
\Rightarrow \left| A \right| = \left| {\begin{array}{*{20}{c}}
2&{ - 3}&5 \\
3&2&{ - 4} \\
1&1&{ - 2}
\end{array}} \right| = 2\left| {\begin{array}{*{20}{c}}
2&{ - 4} \\
1&{ - 2}
\end{array}} \right| - \left( { - 3} \right)\left| {\begin{array}{*{20}{c}}
3&{ - 4} \\
1&{ - 2}
\end{array}} \right| + 5\left| {\begin{array}{*{20}{c}}
3&2 \\
1&1
\end{array}} \right| \\
= 2\left( { - 4 - \left( { - 4} \right)} \right) + 3\left( { - 6 - \left( { - 4} \right)} \right) + 5\left( {3 - 2} \right) = 0 - 6 + 5 = - 1 \\
$
Now calculate $adj\left( A \right)$
$ \Rightarrow adj\left( A \right) = \left[ {\begin{array}{*{20}{c}}
{{c_{11}}}&{{c_{21}}}&{{c_{31}}} \\
{{c_{12}}}&{{c_{22}}}&{{c_{32}}} \\
{{c_{13}}}&{{c_{23}}}&{{c_{33}}}
\end{array}} \right]$
So, calculate its internal elements i.e. its cofactors
\[
{c_{11}} = + 1\left| {\begin{array}{*{20}{c}}
2&{ - 4} \\
1&{ - 2}
\end{array}} \right| = 1\left( { - 4 - \left( { - 4} \right)} \right) = 0,{\text{ }}{{\text{c}}_{21}} = - 1\left| {\begin{array}{*{20}{c}}
{ - 3}&5 \\
1&{ - 2}
\end{array}} \right| = - 1\left( {6 - 5} \right) = - 1,{\text{ }}{{\text{c}}_{31}} = + 1\left| {\begin{array}{*{20}{c}}
{ - 3}&5 \\
2&{ - 4}
\end{array}} \right| = 1\left( {12 - 10} \right) = 2 \\
{c_{12}} = - 1\left| {\begin{array}{*{20}{c}}
3&{ - 4} \\
1&{ - 2}
\end{array}} \right| = - 1\left( { - 6 - \left( { - 4} \right)} \right) = 2,{\text{ }}{{\text{c}}_{22}} = + 1\left| {\begin{array}{*{20}{c}}
2&5 \\
1&{ - 2}
\end{array}} \right| = 1\left( { - 4 - 5} \right) = - 9,{\text{ }}{{\text{c}}_{32}} = - 1\left| {\begin{array}{*{20}{c}}
2&5 \\
3&{ - 4}
\end{array}} \right| = - 1\left( { - 8 - 15} \right) = 23 \\
{c_{13}} = + 1\left| {\begin{array}{*{20}{c}}
3&2 \\
1&1
\end{array}} \right| = 1\left( {3 - 2} \right) = 1,{\text{ }}{{\text{c}}_{23}} = - 1\left| {\begin{array}{*{20}{c}}
2&{ - 3} \\
1&1
\end{array}} \right| = - 1\left( {2 + 3} \right) = - 5,{\text{ }}{{\text{c}}_{33}} = + 1\left| {\begin{array}{*{20}{c}}
2&{ - 3} \\
3&2
\end{array}} \right| = 1\left( {4 - \left( { - 9} \right)} \right) = 13 \\
\]
$ \Rightarrow adj\left( A \right) = \left[ {\begin{array}{*{20}{c}}
0&{ - 1}&2 \\
2&{ - 9}&{23} \\
1&{ - 5}&{13}
\end{array}} \right]$
Now, from equation 2
${A^{ - 1}} = \dfrac{1}{{\left| A \right|}}adj\left( A \right) = \dfrac{1}{{ - 1}}\left[ {\begin{array}{*{20}{c}}
0&{ - 1}&2 \\
2&{ - 9}&{23} \\
1&{ - 5}&{13}
\end{array}} \right]$
So, this is the required ${A^{ - 1}}$.
Now from equation 1
$ \Rightarrow X = {A^{ - 1}}B = \dfrac{1}{{ - 1}}\left[ {\begin{array}{*{20}{c}}
0&{ - 1}&2 \\
2&{ - 9}&{23} \\
1&{ - 5}&{13}
\end{array}} \right]\left[ {\begin{array}{*{20}{c}}
{11} \\
5 \\
3
\end{array}} \right]$
Now apply matrix multiplication
$ \Rightarrow X = {A^{ - 1}}B = \dfrac{1}{{ - 1}}\left[ {\begin{array}{*{20}{c}}
{0 \times 11 - 1 \times 5 + 2 \times 3} \\
{2 \times 11 - 9 \times 5 + 23 \times 3} \\
{1 \times 11 - 5 \times 5 + 13 \times 3}
\end{array}} \right] = \dfrac{1}{{ - 1}}\left[ {\begin{array}{*{20}{c}}
1 \\
{46} \\
{25}
\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}
{ - 1} \\
{ - 46} \\
{ - 25}
\end{array}} \right]$
Hence $X = \left[ {\begin{array}{*{20}{c}}
{ - 1} \\
{ - 46} \\
{ - 25}
\end{array}} \right]$
Now, $X = \left[ {\begin{array}{*{20}{c}}
x \\
y \\
z
\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}
{ - 1} \\
{ - 46} \\
{ - 25}
\end{array}} \right]$, so on comparing we have,
$x = - 1,{\text{ }}y = - 46,{\text{ }}z = - 25$
So, this is the required solution.
Note: In such types of questions convert the system of equation into matrix format in the form $AX = B$, so the solution of the system of equations is $X = {A^{ - 1}}B$ so, first calculate the determinant value of $A$ then calculate the value of ${A^{ - 1}}$ using the formula which is stated above, then apply matrix multiplication we will get the required solution of $X$.
Recently Updated Pages
JEE Main 2023 (January 30th Shift 2) Maths Question Paper with Answer Key

JEE Main 2022 (July 25th Shift 2) Physics Question Paper with Answer Key

JEE Main 2023 (April 6th Shift 2) Maths Question Paper with Answer Key

Classification of Elements and Periodicity in Properties Chapter For JEE Main Chemistry

JEE Main 2023 (January 25th Shift 1) Maths Question Paper with Answer Key

JEE Main 2023 (January 24th Shift 2) Chemistry Question Paper with Answer Key

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility & More

JEE Main Login 2045: Step-by-Step Instructions and Details

JEE Main Exam Marking Scheme: Detailed Breakdown of Marks and Negative Marking

JEE Main 2023 January 24 Shift 2 Question Paper with Answer Keys & Solutions

JEE Mains 2025 Correction Window Date (Out) – Check Procedure and Fees Here!

JEE Main Participating Colleges 2024 - A Complete List of Top Colleges

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

JEE Advanced 2025: Dates, Registration, Syllabus, Eligibility Criteria and More

Learn About Angle Of Deviation In Prism: JEE Main Physics 2025

JEE Main 2025: Conversion of Galvanometer Into Ammeter And Voltmeter in Physics

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Degree of Dissociation and Its Formula With Solved Example for JEE
