
If $A = \left( {\begin{array}{*{20}{c}}
1&2&3 \\
3&1&2 \\
2&3&1
\end{array}} \right)$ and $B = \left( {\begin{array}{*{20}{c}}
{ - 5}&7&1 \\
1&{ - 5}&7 \\
7&1&{ - 5}
\end{array}} \right)$ then $AB$ is equal to
Option:
A. ${I_3}$
B. $2{I_3}$
C. $4{I_3}$
D. $18{I_3}$
Answer
217.5k+ views
Hint: If the number of columns in the first matrix equals the number of rows in the second matrix, the product of the two matrices will be known. The resultant matrix will have the same number of rows as the first matrix and the same number of columns as the second matrix if the product is defined.
Formula Used: The product $AB$ is an $m \times p$ matrix if $A = \left[ {{a_{ij}}} \right]$ is an $m \times n$ matrix and $B = \left[ {{b_{ij}}} \right]$ is an $n \times p$ matrix.
$AB = \left[ {{c_{ij}}} \right]$ , where $\left[ {{c_{ij}}} \right]$ is composed of ${a_{1j}}{b_{1j}} + {a_{2j}}{b_{2j}} + \ldots + {a_{in}}{b_{nj}}$ .
Complete step by step solution: We have matrices $A = \left( {\begin{array}{*{20}{c}}
1&2&3 \\
3&1&2 \\
2&3&1
\end{array}} \right)$ and $B = \left( {\begin{array}{*{20}{c}}
{ - 5}&7&1 \\
1&{ - 5}&7 \\
7&1&{ - 5}
\end{array}} \right)$ .
To find the product of these two matrices, we have to multiply each row of one matrix to each column of the other matrix respectively.
$AB = \left( {\begin{array}{*{20}{c}}
{1 \times ( - 5) + 2 \times 1 + 3 \times 7}&{3 \times ( - 5) + 1 \times 1 + 2 \times 7}&{2 \times ( - 5) + 3 \times 1 + 1 \times 7} \\
{1 \times 7 + 2 \times ( - 5) + 3 \times 1}&{3 \times 7 + 1 \times ( - 5) + 2 \times 1}&{2 \times 7 + 3 \times ( - 5) + 1 \times 1} \\
{1 \times 1 + 2 \times 7 + 3 \times ( - 5)}&{3 \times 1 + 1 \times 7 + 2 \times ( - 5)}&{2 \times 1 + 3 \times 7 + 1 \times ( - 5)}
\end{array}} \right)$
On solving, we get
$AB = \left( {\begin{array}{*{20}{c}}
{18}&0&0 \\
0&{18}&0 \\
0&0&{18}
\end{array}} \right)$
$ \Rightarrow AB = 18{I_3}$
Option ‘D’ is correct
Note: To multiply two matrices, we must ensure that the number of rows in the second matrix equals the number of columns in the first matrix. As a result, a specific number of rows from the first matrix and a specific number of columns from the second matrix will be present in the final matrix. The matrix multiplication order determines the order of the final matrix.
Formula Used: The product $AB$ is an $m \times p$ matrix if $A = \left[ {{a_{ij}}} \right]$ is an $m \times n$ matrix and $B = \left[ {{b_{ij}}} \right]$ is an $n \times p$ matrix.
$AB = \left[ {{c_{ij}}} \right]$ , where $\left[ {{c_{ij}}} \right]$ is composed of ${a_{1j}}{b_{1j}} + {a_{2j}}{b_{2j}} + \ldots + {a_{in}}{b_{nj}}$ .
Complete step by step solution: We have matrices $A = \left( {\begin{array}{*{20}{c}}
1&2&3 \\
3&1&2 \\
2&3&1
\end{array}} \right)$ and $B = \left( {\begin{array}{*{20}{c}}
{ - 5}&7&1 \\
1&{ - 5}&7 \\
7&1&{ - 5}
\end{array}} \right)$ .
To find the product of these two matrices, we have to multiply each row of one matrix to each column of the other matrix respectively.
$AB = \left( {\begin{array}{*{20}{c}}
{1 \times ( - 5) + 2 \times 1 + 3 \times 7}&{3 \times ( - 5) + 1 \times 1 + 2 \times 7}&{2 \times ( - 5) + 3 \times 1 + 1 \times 7} \\
{1 \times 7 + 2 \times ( - 5) + 3 \times 1}&{3 \times 7 + 1 \times ( - 5) + 2 \times 1}&{2 \times 7 + 3 \times ( - 5) + 1 \times 1} \\
{1 \times 1 + 2 \times 7 + 3 \times ( - 5)}&{3 \times 1 + 1 \times 7 + 2 \times ( - 5)}&{2 \times 1 + 3 \times 7 + 1 \times ( - 5)}
\end{array}} \right)$
On solving, we get
$AB = \left( {\begin{array}{*{20}{c}}
{18}&0&0 \\
0&{18}&0 \\
0&0&{18}
\end{array}} \right)$
$ \Rightarrow AB = 18{I_3}$
Option ‘D’ is correct
Note: To multiply two matrices, we must ensure that the number of rows in the second matrix equals the number of columns in the first matrix. As a result, a specific number of rows from the first matrix and a specific number of columns from the second matrix will be present in the final matrix. The matrix multiplication order determines the order of the final matrix.
Recently Updated Pages
Arithmetic, Geometric & Harmonic Progressions Explained

Cartesian Form of Vector Explained: Formula, Examples & Uses

Apparent Frequency Explained: Formula, Uses & Examples

Calorimetry: Definition, Principles & Calculations

Centrifugal Force Explained: Definition, Formula & Examples

Charge in a Magnetic Field: Definition, Formula & Examples

Trending doubts
JEE Main 2026: Application Form Open, Exam Dates, Syllabus, Eligibility & Question Papers

Derivation of Equation of Trajectory Explained for Students

Hybridisation in Chemistry – Concept, Types & Applications

Understanding the Angle of Deviation in a Prism

Understanding Collisions: Types and Examples for Students

How to Convert a Galvanometer into an Ammeter or Voltmeter

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

NCERT Solutions for Class 11 Maths Chapter 10 Conic Sections

NCERT Solutions for Class 11 Maths Chapter 9 Straight Lines

NCERT Solutions For Class 11 Maths Chapter 8 Sequences And Series

NCERT Solutions For Class 11 Maths Chapter 12 Limits And Derivatives

Understanding Atomic Structure for Beginners

