
If a, b, c are the three non-coplanar vectors and p, q, r are defined by the relations \(\vec p = \frac{{\left( {\vec b \times \vec c} \right)}}{{\left[ {\vec a\vec b\vec c} \right]}},\vec q = \frac{{\left( {\vec c \times \vec a} \right)}}{{\left[ {\vec a\vec b\vec c} \right]}},\vec r = \frac{{\left( {\vec a \times \vec b} \right)}}{{\left[ {\vec a\vec b\vec c} \right]}}\)then \(\left( {\vec a + \vec b} \right)\;.\;\vec p\; + \left( {\vec b + \vec c} \right)\;.\;\vec q\; + \left( {\vec c + \vec a} \right)\;.\;\vec r = ?\)
A)\[0\]
B) \[1\]
C) \[2\]
D) \[3\]
Answer
216k+ views
Hint: In this question we are going to use the algebra of vectors. Use vector multiplication and addition. Solve each part of the equation individually and after that add all these to get required value. Non coplanar vectors are those vectors which are not present in the same plane or parallel planes.If two vectors in a scalar triple product are the same then the scalar triple product will be zero.
Formula Used:\(\left( {\vec a + \vec b} \right).\vec c = \vec a.\vec c + \vec b.\vec c\) {Scalar product is distributive in nature}
\(\left( {\vec a + \vec b} \right){\rm{.}}\vec c = \vec c{\rm{.}}\left( {\vec a + \vec b} \right)\)
Complete step by step solution:Given: Three vectors p, q and r are non coplanar and \(\vec p = \frac{{\left( {\vec b \times \vec c} \right)}}{{\left[ {\vec a\vec b\vec c} \right]}},\vec q = \frac{{\left( {\vec c \times \vec a} \right)}}{{\left[ {\vec a\vec b\vec c} \right]}},\vec r = \frac{{\left( {\vec a \times \vec b} \right)}}{{\left[ {\vec a\vec b\vec c} \right]}}\)
\(\left( {\vec a + \vec b} \right).\vec p = \vec a.\vec p + \vec b.\vec p\)
\(\vec a.\vec p + \vec b.\vec p\; = \overrightarrow {a.} \frac{{\left( {\vec b \times \vec c} \right)}}{{\left[ {\vec a\vec b\vec c} \right]}} + \;\overrightarrow {b.} \frac{{\left( {\vec b \times \vec c} \right)}}{{\left[ {\vec a\vec b\vec c} \right]}}\)
\(\overrightarrow {a.} \frac{{\left( {\vec b \times \vec c} \right)}}{{\left[ {\vec a\vec b\vec c} \right]}} + \;\overrightarrow {b.} \frac{{\left( {\vec b \times \vec c} \right)}}{{\left[ {\vec a\vec b\vec c} \right]}} = \frac{{\overrightarrow {a.} \left( {\vec b \times \vec c} \right)}}{{\left[ {\vec a\vec b\vec c} \right]}} + \frac{{\overrightarrow {b.} \left( {\vec b \times \vec c} \right)}}{{\left[ {\vec a\vec b\vec c} \right]}}\)
\(\frac{{\overrightarrow {a.} \left( {\vec b \times \vec c} \right)}}{{\left[ {\vec a\vec b\vec c} \right]}} + \frac{{\overrightarrow {b.} \left( {\vec b \times \vec c} \right)}}{{\left[ {\vec a\vec b\vec c} \right]}} = \frac{{\left[ {\vec a\vec b\vec c} \right]}}{{\left[ {\vec a\vec b\vec c} \right]}} + \frac{{\left[ {\vec b\vec b\vec c} \right]}}{{\left[ {\vec a\vec b\vec c} \right]}}\)
We know that:
If two vectors in a scalar triple product are the same then the scalar triple product will be zero.
Above statement in mathematical form can be written as
\(\left[ {\vec b\vec c\vec b} \right] = 0\)
\(\frac{{\overrightarrow {a.} \left( {\vec b \times \vec c} \right)}}{{\left[ {\vec a\vec b\vec c} \right]}} + \frac{{\overrightarrow {b.} \left( {\vec b \times \vec c} \right)}}{{\left[ {\vec a\vec b\vec c} \right]}} = \frac{{\left[ {\vec a\vec b\vec c} \right]}}{{\left[ {\vec a\vec b\vec c} \right]}} + \frac{{\left[ {\vec b\vec b\vec c} \right]}}{{\left[ {\vec a\vec b\vec c} \right]}} = 1 + 0\)
Similarly, we can find
\(\left( {\vec b + \vec c} \right){\rm{.}}\overrightarrow {q\;} = \left( {\vec c + \vec a} \right){\rm{.}}\overrightarrow {r\;} = 1\)
\(\left( {\vec a + \vec b} \right){\rm{.}}\vec p + \left( {\vec b + \vec c} \right){\rm{.}}\vec q + \left( {\vec c + \vec a} \right){\rm{.}}\vec r = 1 + 1 + 1 = 3\)
Option ‘D’ is correct
Note: Here in this question we have to find the value of the given vector equation. We will use the algebra of vectors i.e. multiplication and addition of vectors in order to find required value.
Vector addition follows commutative and associative law.
Triangle law and parallelogram law are two methods of vector addition.
Vector products are distributive in nature.
Don’t try to solve the whole equation together because it will take more time and there will be a chance of mistakes.
Formula Used:\(\left( {\vec a + \vec b} \right).\vec c = \vec a.\vec c + \vec b.\vec c\) {Scalar product is distributive in nature}
\(\left( {\vec a + \vec b} \right){\rm{.}}\vec c = \vec c{\rm{.}}\left( {\vec a + \vec b} \right)\)
Complete step by step solution:Given: Three vectors p, q and r are non coplanar and \(\vec p = \frac{{\left( {\vec b \times \vec c} \right)}}{{\left[ {\vec a\vec b\vec c} \right]}},\vec q = \frac{{\left( {\vec c \times \vec a} \right)}}{{\left[ {\vec a\vec b\vec c} \right]}},\vec r = \frac{{\left( {\vec a \times \vec b} \right)}}{{\left[ {\vec a\vec b\vec c} \right]}}\)
\(\left( {\vec a + \vec b} \right).\vec p = \vec a.\vec p + \vec b.\vec p\)
\(\vec a.\vec p + \vec b.\vec p\; = \overrightarrow {a.} \frac{{\left( {\vec b \times \vec c} \right)}}{{\left[ {\vec a\vec b\vec c} \right]}} + \;\overrightarrow {b.} \frac{{\left( {\vec b \times \vec c} \right)}}{{\left[ {\vec a\vec b\vec c} \right]}}\)
\(\overrightarrow {a.} \frac{{\left( {\vec b \times \vec c} \right)}}{{\left[ {\vec a\vec b\vec c} \right]}} + \;\overrightarrow {b.} \frac{{\left( {\vec b \times \vec c} \right)}}{{\left[ {\vec a\vec b\vec c} \right]}} = \frac{{\overrightarrow {a.} \left( {\vec b \times \vec c} \right)}}{{\left[ {\vec a\vec b\vec c} \right]}} + \frac{{\overrightarrow {b.} \left( {\vec b \times \vec c} \right)}}{{\left[ {\vec a\vec b\vec c} \right]}}\)
\(\frac{{\overrightarrow {a.} \left( {\vec b \times \vec c} \right)}}{{\left[ {\vec a\vec b\vec c} \right]}} + \frac{{\overrightarrow {b.} \left( {\vec b \times \vec c} \right)}}{{\left[ {\vec a\vec b\vec c} \right]}} = \frac{{\left[ {\vec a\vec b\vec c} \right]}}{{\left[ {\vec a\vec b\vec c} \right]}} + \frac{{\left[ {\vec b\vec b\vec c} \right]}}{{\left[ {\vec a\vec b\vec c} \right]}}\)
We know that:
If two vectors in a scalar triple product are the same then the scalar triple product will be zero.
Above statement in mathematical form can be written as
\(\left[ {\vec b\vec c\vec b} \right] = 0\)
\(\frac{{\overrightarrow {a.} \left( {\vec b \times \vec c} \right)}}{{\left[ {\vec a\vec b\vec c} \right]}} + \frac{{\overrightarrow {b.} \left( {\vec b \times \vec c} \right)}}{{\left[ {\vec a\vec b\vec c} \right]}} = \frac{{\left[ {\vec a\vec b\vec c} \right]}}{{\left[ {\vec a\vec b\vec c} \right]}} + \frac{{\left[ {\vec b\vec b\vec c} \right]}}{{\left[ {\vec a\vec b\vec c} \right]}} = 1 + 0\)
Similarly, we can find
\(\left( {\vec b + \vec c} \right){\rm{.}}\overrightarrow {q\;} = \left( {\vec c + \vec a} \right){\rm{.}}\overrightarrow {r\;} = 1\)
\(\left( {\vec a + \vec b} \right){\rm{.}}\vec p + \left( {\vec b + \vec c} \right){\rm{.}}\vec q + \left( {\vec c + \vec a} \right){\rm{.}}\vec r = 1 + 1 + 1 = 3\)
Option ‘D’ is correct
Note: Here in this question we have to find the value of the given vector equation. We will use the algebra of vectors i.e. multiplication and addition of vectors in order to find required value.
Vector addition follows commutative and associative law.
Triangle law and parallelogram law are two methods of vector addition.
Vector products are distributive in nature.
Don’t try to solve the whole equation together because it will take more time and there will be a chance of mistakes.
Recently Updated Pages
JEE Atomic Structure and Chemical Bonding important Concepts and Tips

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

Electricity and Magnetism Explained: Key Concepts & Applications

Chemical Properties of Hydrogen - Important Concepts for JEE Exam Preparation

JEE Energetics Important Concepts and Tips for Exam Preparation

JEE Isolation, Preparation and Properties of Non-metals Important Concepts and Tips for Exam Preparation

Trending doubts
JEE Main 2026: Application Form Open, Exam Dates, Syllabus, Eligibility & Question Papers

JEE Main Correction Window 2026 Session 1 Dates Announced - Edit Form Details, Dates and Link

Derivation of Equation of Trajectory Explained for Students

Hybridisation in Chemistry – Concept, Types & Applications

Understanding the Angle of Deviation in a Prism

Understanding Collisions: Types and Examples for Students

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

How to Convert a Galvanometer into an Ammeter or Voltmeter

Atomic Structure: Definition, Models, and Examples

Ideal and Non-Ideal Solutions Explained for Class 12 Chemistry

Degree of Dissociation: Meaning, Formula, Calculation & Uses

Understanding Electromagnetic Waves and Their Importance

