
If a, b, c are the three non-coplanar vectors and p, q, r are defined by the relations \(\vec p = \frac{{\left( {\vec b \times \vec c} \right)}}{{\left[ {\vec a\vec b\vec c} \right]}},\vec q = \frac{{\left( {\vec c \times \vec a} \right)}}{{\left[ {\vec a\vec b\vec c} \right]}},\vec r = \frac{{\left( {\vec a \times \vec b} \right)}}{{\left[ {\vec a\vec b\vec c} \right]}}\)then \(\left( {\vec a + \vec b} \right)\;.\;\vec p\; + \left( {\vec b + \vec c} \right)\;.\;\vec q\; + \left( {\vec c + \vec a} \right)\;.\;\vec r = ?\)
A)\[0\]
B) \[1\]
C) \[2\]
D) \[3\]
Answer
161.1k+ views
Hint: In this question we are going to use the algebra of vectors. Use vector multiplication and addition. Solve each part of the equation individually and after that add all these to get required value. Non coplanar vectors are those vectors which are not present in the same plane or parallel planes.If two vectors in a scalar triple product are the same then the scalar triple product will be zero.
Formula Used:\(\left( {\vec a + \vec b} \right).\vec c = \vec a.\vec c + \vec b.\vec c\) {Scalar product is distributive in nature}
\(\left( {\vec a + \vec b} \right){\rm{.}}\vec c = \vec c{\rm{.}}\left( {\vec a + \vec b} \right)\)
Complete step by step solution:Given: Three vectors p, q and r are non coplanar and \(\vec p = \frac{{\left( {\vec b \times \vec c} \right)}}{{\left[ {\vec a\vec b\vec c} \right]}},\vec q = \frac{{\left( {\vec c \times \vec a} \right)}}{{\left[ {\vec a\vec b\vec c} \right]}},\vec r = \frac{{\left( {\vec a \times \vec b} \right)}}{{\left[ {\vec a\vec b\vec c} \right]}}\)
\(\left( {\vec a + \vec b} \right).\vec p = \vec a.\vec p + \vec b.\vec p\)
\(\vec a.\vec p + \vec b.\vec p\; = \overrightarrow {a.} \frac{{\left( {\vec b \times \vec c} \right)}}{{\left[ {\vec a\vec b\vec c} \right]}} + \;\overrightarrow {b.} \frac{{\left( {\vec b \times \vec c} \right)}}{{\left[ {\vec a\vec b\vec c} \right]}}\)
\(\overrightarrow {a.} \frac{{\left( {\vec b \times \vec c} \right)}}{{\left[ {\vec a\vec b\vec c} \right]}} + \;\overrightarrow {b.} \frac{{\left( {\vec b \times \vec c} \right)}}{{\left[ {\vec a\vec b\vec c} \right]}} = \frac{{\overrightarrow {a.} \left( {\vec b \times \vec c} \right)}}{{\left[ {\vec a\vec b\vec c} \right]}} + \frac{{\overrightarrow {b.} \left( {\vec b \times \vec c} \right)}}{{\left[ {\vec a\vec b\vec c} \right]}}\)
\(\frac{{\overrightarrow {a.} \left( {\vec b \times \vec c} \right)}}{{\left[ {\vec a\vec b\vec c} \right]}} + \frac{{\overrightarrow {b.} \left( {\vec b \times \vec c} \right)}}{{\left[ {\vec a\vec b\vec c} \right]}} = \frac{{\left[ {\vec a\vec b\vec c} \right]}}{{\left[ {\vec a\vec b\vec c} \right]}} + \frac{{\left[ {\vec b\vec b\vec c} \right]}}{{\left[ {\vec a\vec b\vec c} \right]}}\)
We know that:
If two vectors in a scalar triple product are the same then the scalar triple product will be zero.
Above statement in mathematical form can be written as
\(\left[ {\vec b\vec c\vec b} \right] = 0\)
\(\frac{{\overrightarrow {a.} \left( {\vec b \times \vec c} \right)}}{{\left[ {\vec a\vec b\vec c} \right]}} + \frac{{\overrightarrow {b.} \left( {\vec b \times \vec c} \right)}}{{\left[ {\vec a\vec b\vec c} \right]}} = \frac{{\left[ {\vec a\vec b\vec c} \right]}}{{\left[ {\vec a\vec b\vec c} \right]}} + \frac{{\left[ {\vec b\vec b\vec c} \right]}}{{\left[ {\vec a\vec b\vec c} \right]}} = 1 + 0\)
Similarly, we can find
\(\left( {\vec b + \vec c} \right){\rm{.}}\overrightarrow {q\;} = \left( {\vec c + \vec a} \right){\rm{.}}\overrightarrow {r\;} = 1\)
\(\left( {\vec a + \vec b} \right){\rm{.}}\vec p + \left( {\vec b + \vec c} \right){\rm{.}}\vec q + \left( {\vec c + \vec a} \right){\rm{.}}\vec r = 1 + 1 + 1 = 3\)
Option ‘D’ is correct
Note: Here in this question we have to find the value of the given vector equation. We will use the algebra of vectors i.e. multiplication and addition of vectors in order to find required value.
Vector addition follows commutative and associative law.
Triangle law and parallelogram law are two methods of vector addition.
Vector products are distributive in nature.
Don’t try to solve the whole equation together because it will take more time and there will be a chance of mistakes.
Formula Used:\(\left( {\vec a + \vec b} \right).\vec c = \vec a.\vec c + \vec b.\vec c\) {Scalar product is distributive in nature}
\(\left( {\vec a + \vec b} \right){\rm{.}}\vec c = \vec c{\rm{.}}\left( {\vec a + \vec b} \right)\)
Complete step by step solution:Given: Three vectors p, q and r are non coplanar and \(\vec p = \frac{{\left( {\vec b \times \vec c} \right)}}{{\left[ {\vec a\vec b\vec c} \right]}},\vec q = \frac{{\left( {\vec c \times \vec a} \right)}}{{\left[ {\vec a\vec b\vec c} \right]}},\vec r = \frac{{\left( {\vec a \times \vec b} \right)}}{{\left[ {\vec a\vec b\vec c} \right]}}\)
\(\left( {\vec a + \vec b} \right).\vec p = \vec a.\vec p + \vec b.\vec p\)
\(\vec a.\vec p + \vec b.\vec p\; = \overrightarrow {a.} \frac{{\left( {\vec b \times \vec c} \right)}}{{\left[ {\vec a\vec b\vec c} \right]}} + \;\overrightarrow {b.} \frac{{\left( {\vec b \times \vec c} \right)}}{{\left[ {\vec a\vec b\vec c} \right]}}\)
\(\overrightarrow {a.} \frac{{\left( {\vec b \times \vec c} \right)}}{{\left[ {\vec a\vec b\vec c} \right]}} + \;\overrightarrow {b.} \frac{{\left( {\vec b \times \vec c} \right)}}{{\left[ {\vec a\vec b\vec c} \right]}} = \frac{{\overrightarrow {a.} \left( {\vec b \times \vec c} \right)}}{{\left[ {\vec a\vec b\vec c} \right]}} + \frac{{\overrightarrow {b.} \left( {\vec b \times \vec c} \right)}}{{\left[ {\vec a\vec b\vec c} \right]}}\)
\(\frac{{\overrightarrow {a.} \left( {\vec b \times \vec c} \right)}}{{\left[ {\vec a\vec b\vec c} \right]}} + \frac{{\overrightarrow {b.} \left( {\vec b \times \vec c} \right)}}{{\left[ {\vec a\vec b\vec c} \right]}} = \frac{{\left[ {\vec a\vec b\vec c} \right]}}{{\left[ {\vec a\vec b\vec c} \right]}} + \frac{{\left[ {\vec b\vec b\vec c} \right]}}{{\left[ {\vec a\vec b\vec c} \right]}}\)
We know that:
If two vectors in a scalar triple product are the same then the scalar triple product will be zero.
Above statement in mathematical form can be written as
\(\left[ {\vec b\vec c\vec b} \right] = 0\)
\(\frac{{\overrightarrow {a.} \left( {\vec b \times \vec c} \right)}}{{\left[ {\vec a\vec b\vec c} \right]}} + \frac{{\overrightarrow {b.} \left( {\vec b \times \vec c} \right)}}{{\left[ {\vec a\vec b\vec c} \right]}} = \frac{{\left[ {\vec a\vec b\vec c} \right]}}{{\left[ {\vec a\vec b\vec c} \right]}} + \frac{{\left[ {\vec b\vec b\vec c} \right]}}{{\left[ {\vec a\vec b\vec c} \right]}} = 1 + 0\)
Similarly, we can find
\(\left( {\vec b + \vec c} \right){\rm{.}}\overrightarrow {q\;} = \left( {\vec c + \vec a} \right){\rm{.}}\overrightarrow {r\;} = 1\)
\(\left( {\vec a + \vec b} \right){\rm{.}}\vec p + \left( {\vec b + \vec c} \right){\rm{.}}\vec q + \left( {\vec c + \vec a} \right){\rm{.}}\vec r = 1 + 1 + 1 = 3\)
Option ‘D’ is correct
Note: Here in this question we have to find the value of the given vector equation. We will use the algebra of vectors i.e. multiplication and addition of vectors in order to find required value.
Vector addition follows commutative and associative law.
Triangle law and parallelogram law are two methods of vector addition.
Vector products are distributive in nature.
Don’t try to solve the whole equation together because it will take more time and there will be a chance of mistakes.
Recently Updated Pages
If tan 1y tan 1x + tan 1left frac2x1 x2 right where x frac1sqrt 3 Then the value of y is

Geometry of Complex Numbers – Topics, Reception, Audience and Related Readings

JEE Main 2021 July 25 Shift 1 Question Paper with Answer Key

JEE Main 2021 July 22 Shift 2 Question Paper with Answer Key

JEE Electricity and Magnetism Important Concepts and Tips for Exam Preparation

JEE Energetics Important Concepts and Tips for Exam Preparation

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation

Displacement-Time Graph and Velocity-Time Graph for JEE

JEE Main 2026 Syllabus PDF - Download Paper 1 and 2 Syllabus by NTA

JEE Main Eligibility Criteria 2025

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

JEE Advanced 2025: Dates, Registration, Syllabus, Eligibility Criteria and More

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

Degree of Dissociation and Its Formula With Solved Example for JEE

Free Radical Substitution Mechanism of Alkanes for JEE Main 2025

JEE Advanced 2025 Notes
