
If a, b, c are the three non-coplanar vectors and p, q, r are defined by the relations \(\vec p = \frac{{\left( {\vec b \times \vec c} \right)}}{{\left[ {\vec a\vec b\vec c} \right]}},\vec q = \frac{{\left( {\vec c \times \vec a} \right)}}{{\left[ {\vec a\vec b\vec c} \right]}},\vec r = \frac{{\left( {\vec a \times \vec b} \right)}}{{\left[ {\vec a\vec b\vec c} \right]}}\)then \(\left( {\vec a + \vec b} \right)\;.\;\vec p\; + \left( {\vec b + \vec c} \right)\;.\;\vec q\; + \left( {\vec c + \vec a} \right)\;.\;\vec r = ?\)
A)\[0\]
B) \[1\]
C) \[2\]
D) \[3\]
Answer
232.8k+ views
Hint: In this question we are going to use the algebra of vectors. Use vector multiplication and addition. Solve each part of the equation individually and after that add all these to get required value. Non coplanar vectors are those vectors which are not present in the same plane or parallel planes.If two vectors in a scalar triple product are the same then the scalar triple product will be zero.
Formula Used:\(\left( {\vec a + \vec b} \right).\vec c = \vec a.\vec c + \vec b.\vec c\) {Scalar product is distributive in nature}
\(\left( {\vec a + \vec b} \right){\rm{.}}\vec c = \vec c{\rm{.}}\left( {\vec a + \vec b} \right)\)
Complete step by step solution:Given: Three vectors p, q and r are non coplanar and \(\vec p = \frac{{\left( {\vec b \times \vec c} \right)}}{{\left[ {\vec a\vec b\vec c} \right]}},\vec q = \frac{{\left( {\vec c \times \vec a} \right)}}{{\left[ {\vec a\vec b\vec c} \right]}},\vec r = \frac{{\left( {\vec a \times \vec b} \right)}}{{\left[ {\vec a\vec b\vec c} \right]}}\)
\(\left( {\vec a + \vec b} \right).\vec p = \vec a.\vec p + \vec b.\vec p\)
\(\vec a.\vec p + \vec b.\vec p\; = \overrightarrow {a.} \frac{{\left( {\vec b \times \vec c} \right)}}{{\left[ {\vec a\vec b\vec c} \right]}} + \;\overrightarrow {b.} \frac{{\left( {\vec b \times \vec c} \right)}}{{\left[ {\vec a\vec b\vec c} \right]}}\)
\(\overrightarrow {a.} \frac{{\left( {\vec b \times \vec c} \right)}}{{\left[ {\vec a\vec b\vec c} \right]}} + \;\overrightarrow {b.} \frac{{\left( {\vec b \times \vec c} \right)}}{{\left[ {\vec a\vec b\vec c} \right]}} = \frac{{\overrightarrow {a.} \left( {\vec b \times \vec c} \right)}}{{\left[ {\vec a\vec b\vec c} \right]}} + \frac{{\overrightarrow {b.} \left( {\vec b \times \vec c} \right)}}{{\left[ {\vec a\vec b\vec c} \right]}}\)
\(\frac{{\overrightarrow {a.} \left( {\vec b \times \vec c} \right)}}{{\left[ {\vec a\vec b\vec c} \right]}} + \frac{{\overrightarrow {b.} \left( {\vec b \times \vec c} \right)}}{{\left[ {\vec a\vec b\vec c} \right]}} = \frac{{\left[ {\vec a\vec b\vec c} \right]}}{{\left[ {\vec a\vec b\vec c} \right]}} + \frac{{\left[ {\vec b\vec b\vec c} \right]}}{{\left[ {\vec a\vec b\vec c} \right]}}\)
We know that:
If two vectors in a scalar triple product are the same then the scalar triple product will be zero.
Above statement in mathematical form can be written as
\(\left[ {\vec b\vec c\vec b} \right] = 0\)
\(\frac{{\overrightarrow {a.} \left( {\vec b \times \vec c} \right)}}{{\left[ {\vec a\vec b\vec c} \right]}} + \frac{{\overrightarrow {b.} \left( {\vec b \times \vec c} \right)}}{{\left[ {\vec a\vec b\vec c} \right]}} = \frac{{\left[ {\vec a\vec b\vec c} \right]}}{{\left[ {\vec a\vec b\vec c} \right]}} + \frac{{\left[ {\vec b\vec b\vec c} \right]}}{{\left[ {\vec a\vec b\vec c} \right]}} = 1 + 0\)
Similarly, we can find
\(\left( {\vec b + \vec c} \right){\rm{.}}\overrightarrow {q\;} = \left( {\vec c + \vec a} \right){\rm{.}}\overrightarrow {r\;} = 1\)
\(\left( {\vec a + \vec b} \right){\rm{.}}\vec p + \left( {\vec b + \vec c} \right){\rm{.}}\vec q + \left( {\vec c + \vec a} \right){\rm{.}}\vec r = 1 + 1 + 1 = 3\)
Option ‘D’ is correct
Note: Here in this question we have to find the value of the given vector equation. We will use the algebra of vectors i.e. multiplication and addition of vectors in order to find required value.
Vector addition follows commutative and associative law.
Triangle law and parallelogram law are two methods of vector addition.
Vector products are distributive in nature.
Don’t try to solve the whole equation together because it will take more time and there will be a chance of mistakes.
Formula Used:\(\left( {\vec a + \vec b} \right).\vec c = \vec a.\vec c + \vec b.\vec c\) {Scalar product is distributive in nature}
\(\left( {\vec a + \vec b} \right){\rm{.}}\vec c = \vec c{\rm{.}}\left( {\vec a + \vec b} \right)\)
Complete step by step solution:Given: Three vectors p, q and r are non coplanar and \(\vec p = \frac{{\left( {\vec b \times \vec c} \right)}}{{\left[ {\vec a\vec b\vec c} \right]}},\vec q = \frac{{\left( {\vec c \times \vec a} \right)}}{{\left[ {\vec a\vec b\vec c} \right]}},\vec r = \frac{{\left( {\vec a \times \vec b} \right)}}{{\left[ {\vec a\vec b\vec c} \right]}}\)
\(\left( {\vec a + \vec b} \right).\vec p = \vec a.\vec p + \vec b.\vec p\)
\(\vec a.\vec p + \vec b.\vec p\; = \overrightarrow {a.} \frac{{\left( {\vec b \times \vec c} \right)}}{{\left[ {\vec a\vec b\vec c} \right]}} + \;\overrightarrow {b.} \frac{{\left( {\vec b \times \vec c} \right)}}{{\left[ {\vec a\vec b\vec c} \right]}}\)
\(\overrightarrow {a.} \frac{{\left( {\vec b \times \vec c} \right)}}{{\left[ {\vec a\vec b\vec c} \right]}} + \;\overrightarrow {b.} \frac{{\left( {\vec b \times \vec c} \right)}}{{\left[ {\vec a\vec b\vec c} \right]}} = \frac{{\overrightarrow {a.} \left( {\vec b \times \vec c} \right)}}{{\left[ {\vec a\vec b\vec c} \right]}} + \frac{{\overrightarrow {b.} \left( {\vec b \times \vec c} \right)}}{{\left[ {\vec a\vec b\vec c} \right]}}\)
\(\frac{{\overrightarrow {a.} \left( {\vec b \times \vec c} \right)}}{{\left[ {\vec a\vec b\vec c} \right]}} + \frac{{\overrightarrow {b.} \left( {\vec b \times \vec c} \right)}}{{\left[ {\vec a\vec b\vec c} \right]}} = \frac{{\left[ {\vec a\vec b\vec c} \right]}}{{\left[ {\vec a\vec b\vec c} \right]}} + \frac{{\left[ {\vec b\vec b\vec c} \right]}}{{\left[ {\vec a\vec b\vec c} \right]}}\)
We know that:
If two vectors in a scalar triple product are the same then the scalar triple product will be zero.
Above statement in mathematical form can be written as
\(\left[ {\vec b\vec c\vec b} \right] = 0\)
\(\frac{{\overrightarrow {a.} \left( {\vec b \times \vec c} \right)}}{{\left[ {\vec a\vec b\vec c} \right]}} + \frac{{\overrightarrow {b.} \left( {\vec b \times \vec c} \right)}}{{\left[ {\vec a\vec b\vec c} \right]}} = \frac{{\left[ {\vec a\vec b\vec c} \right]}}{{\left[ {\vec a\vec b\vec c} \right]}} + \frac{{\left[ {\vec b\vec b\vec c} \right]}}{{\left[ {\vec a\vec b\vec c} \right]}} = 1 + 0\)
Similarly, we can find
\(\left( {\vec b + \vec c} \right){\rm{.}}\overrightarrow {q\;} = \left( {\vec c + \vec a} \right){\rm{.}}\overrightarrow {r\;} = 1\)
\(\left( {\vec a + \vec b} \right){\rm{.}}\vec p + \left( {\vec b + \vec c} \right){\rm{.}}\vec q + \left( {\vec c + \vec a} \right){\rm{.}}\vec r = 1 + 1 + 1 = 3\)
Option ‘D’ is correct
Note: Here in this question we have to find the value of the given vector equation. We will use the algebra of vectors i.e. multiplication and addition of vectors in order to find required value.
Vector addition follows commutative and associative law.
Triangle law and parallelogram law are two methods of vector addition.
Vector products are distributive in nature.
Don’t try to solve the whole equation together because it will take more time and there will be a chance of mistakes.
Recently Updated Pages
JEE Main 2023 April 6 Shift 1 Question Paper with Answer Key

JEE Main 2023 April 6 Shift 2 Question Paper with Answer Key

JEE Main 2023 (January 31 Evening Shift) Question Paper with Solutions [PDF]

JEE Main 2023 January 30 Shift 2 Question Paper with Answer Key

JEE Main 2023 January 25 Shift 1 Question Paper with Answer Key

JEE Main 2023 January 24 Shift 2 Question Paper with Answer Key

Trending doubts
JEE Main 2026: Session 2 Registration Open, City Intimation Slip, Exam Dates, Syllabus & Eligibility

JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

Understanding the Angle of Deviation in a Prism

Hybridisation in Chemistry – Concept, Types & Applications

How to Convert a Galvanometer into an Ammeter or Voltmeter

Understanding the Electric Field of a Uniformly Charged Ring

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

Derivation of Equation of Trajectory Explained for Students

Understanding Electromagnetic Waves and Their Importance

Understanding How a Current Loop Acts as a Magnetic Dipole

Understanding Average and RMS Value in Electrical Circuits

