
If a and b are two non - zero, non - collinear vectors, then 2[a b i]i + 2[a b j]j + 2[a b k]k + [a b a] is equal to?
1) 2 (a × b)
2) a × b
3) a + b
4) None of these
Answer
216.3k+ views
Hint: In this type of question, we should know about the “vectors”. Vector is defined as a physical quantity that has both magnitude and direction. It is often represented by an arrow whose length is proportional to the magnitude of the quantity and whose direction is the same as that of the quantity.
Complete step by step Solution:
Right hand rule
Using the right-hand rule, the vector product's direction may be shown. The thumb of your right hand will point in the direction of the vector product if you curl your fingers in a rotation from vector A to vector B.
The product of the magnitudes and the cosine of the smaller angle between the two vectors, A and B, is known as the scalar or dot product of the two vectors.
Properties of dot products and cross products are:
$\overset{\hat{\ }}{\mathop{i}}\,.\overset{\hat{\ }}{\mathop{i}}\,=\overset{\hat{\ }}{\mathop{j}}\,.\overset{\hat{\ }}{\mathop{j}}\,=\overset{\hat{\ }}{\mathop{k}}\,.\overset{\hat{\ }}{\mathop{k}}\,=1$
$\overset{\hat{\ }}{\mathop{i}}\,.\overset{\hat{\ }}{\mathop{j}}\,=\overset{\hat{\ }}{\mathop{j}}\,.\overset{\hat{\ }}{\mathop{k}}\,=\overset{\hat{\ }}{\mathop{k}}\,.\overset{\hat{\ }}{\mathop{i}}\,=0$
$\overset{\hat{\ }}{\mathop{i}}\,\times \overset{\hat{\ }}{\mathop{i}}\,=\overset{\hat{\ }}{\mathop{j}}\,\times \overset{\hat{\ }}{\mathop{j}}\,=\overset{\hat{\ }}{\mathop{k}}\,\times \overset{\hat{\ }}{\mathop{k}}\,=0$
$\overset{\hat{\ }}{\mathop{i}}\,\times \overset{\hat{\ }}{\mathop{j}}\,=\overset{\hat{\ }}{\mathop{k}}\,;\overset{\hat{\ }}{\mathop{j}}\,\times \overset{\hat{\ }}{\mathop{k}}\,=\overset{\hat{\ }}{\mathop{i}}\,;\overset{\hat{\ }}{\mathop{k}}\,\times \overset{\hat{\ }}{\mathop{i}}\,=\overset{\hat{\ }}{\mathop{j}}\,$
Now, we have, 2[a b i]i + 2[a b j]j + 2[a b k]k + [a b a]
Suppose, $\overset{\to }{\mathop{a}}\,={{a}_{1}}i+{{a}_{2}}j+{{a}_{3}}k$
$\overset{\to }{\mathop{b}}\,={{b}_{1}}i+{{b}_{2}}j+{{b}_{3}}k$
=\[2\left[ a\text{ }b\text{ }i \right]i\text{ }+\text{ }2\left[ a\text{ }b\text{ }j \right]j\text{ }+\text{ }2\left[ a\text{ }b\text{ }k \right]k\text{ }+\text{ }\left[ a\text{ }b\text{ }a \right]\]
=\[2\left( a\text{ }\times \text{ }b \right)\text{ }i\text{ }.\text{ }i\text{ }+\text{ }2\left( a\text{ }\times \text{ }b \right)\text{ }j\text{ }.\text{ }j\text{ }\text{ }2\left( a\text{ }\times \text{ }b \right)\text{ }k\text{ }.\text{ }k\text{ }+\text{ }0\] $(\because [aab]=0)$
=\[2\left( a\text{ }\times \text{ }b \right)\text{ }+\text{ }2\left( a\text{ }\times \text{ }b \right)\text{ }\text{ }2\left( a\text{ }\times \text{ }b \right)\] ($\overset{\hat{\ }}{\mathop{i}}\,.\overset{\hat{\ }}{\mathop{i}}\,=\overset{\hat{\ }}{\mathop{j}}\,.\overset{\hat{\ }}{\mathop{j}}\,=\overset{\hat{\ }}{\mathop{k}}\,.\overset{\hat{\ }}{\mathop{k}}\,=1$)
=$2(a\times b)$
Therefore, the correct option is (1).
Note: Many real-world scenarios involving force or velocity can be applied to vectors. Take the forces on a boat crossing a river as an illustration. A force is produced in one direction by the boat's motor and another in another by the river's stream.
Complete step by step Solution:
Right hand rule
Using the right-hand rule, the vector product's direction may be shown. The thumb of your right hand will point in the direction of the vector product if you curl your fingers in a rotation from vector A to vector B.
The product of the magnitudes and the cosine of the smaller angle between the two vectors, A and B, is known as the scalar or dot product of the two vectors.
Properties of dot products and cross products are:
$\overset{\hat{\ }}{\mathop{i}}\,.\overset{\hat{\ }}{\mathop{i}}\,=\overset{\hat{\ }}{\mathop{j}}\,.\overset{\hat{\ }}{\mathop{j}}\,=\overset{\hat{\ }}{\mathop{k}}\,.\overset{\hat{\ }}{\mathop{k}}\,=1$
$\overset{\hat{\ }}{\mathop{i}}\,.\overset{\hat{\ }}{\mathop{j}}\,=\overset{\hat{\ }}{\mathop{j}}\,.\overset{\hat{\ }}{\mathop{k}}\,=\overset{\hat{\ }}{\mathop{k}}\,.\overset{\hat{\ }}{\mathop{i}}\,=0$
$\overset{\hat{\ }}{\mathop{i}}\,\times \overset{\hat{\ }}{\mathop{i}}\,=\overset{\hat{\ }}{\mathop{j}}\,\times \overset{\hat{\ }}{\mathop{j}}\,=\overset{\hat{\ }}{\mathop{k}}\,\times \overset{\hat{\ }}{\mathop{k}}\,=0$
$\overset{\hat{\ }}{\mathop{i}}\,\times \overset{\hat{\ }}{\mathop{j}}\,=\overset{\hat{\ }}{\mathop{k}}\,;\overset{\hat{\ }}{\mathop{j}}\,\times \overset{\hat{\ }}{\mathop{k}}\,=\overset{\hat{\ }}{\mathop{i}}\,;\overset{\hat{\ }}{\mathop{k}}\,\times \overset{\hat{\ }}{\mathop{i}}\,=\overset{\hat{\ }}{\mathop{j}}\,$
Now, we have, 2[a b i]i + 2[a b j]j + 2[a b k]k + [a b a]
Suppose, $\overset{\to }{\mathop{a}}\,={{a}_{1}}i+{{a}_{2}}j+{{a}_{3}}k$
$\overset{\to }{\mathop{b}}\,={{b}_{1}}i+{{b}_{2}}j+{{b}_{3}}k$
=\[2\left[ a\text{ }b\text{ }i \right]i\text{ }+\text{ }2\left[ a\text{ }b\text{ }j \right]j\text{ }+\text{ }2\left[ a\text{ }b\text{ }k \right]k\text{ }+\text{ }\left[ a\text{ }b\text{ }a \right]\]
=\[2\left( a\text{ }\times \text{ }b \right)\text{ }i\text{ }.\text{ }i\text{ }+\text{ }2\left( a\text{ }\times \text{ }b \right)\text{ }j\text{ }.\text{ }j\text{ }\text{ }2\left( a\text{ }\times \text{ }b \right)\text{ }k\text{ }.\text{ }k\text{ }+\text{ }0\] $(\because [aab]=0)$
=\[2\left( a\text{ }\times \text{ }b \right)\text{ }+\text{ }2\left( a\text{ }\times \text{ }b \right)\text{ }\text{ }2\left( a\text{ }\times \text{ }b \right)\] ($\overset{\hat{\ }}{\mathop{i}}\,.\overset{\hat{\ }}{\mathop{i}}\,=\overset{\hat{\ }}{\mathop{j}}\,.\overset{\hat{\ }}{\mathop{j}}\,=\overset{\hat{\ }}{\mathop{k}}\,.\overset{\hat{\ }}{\mathop{k}}\,=1$)
=$2(a\times b)$
Therefore, the correct option is (1).
Note: Many real-world scenarios involving force or velocity can be applied to vectors. Take the forces on a boat crossing a river as an illustration. A force is produced in one direction by the boat's motor and another in another by the river's stream.
Recently Updated Pages
JEE Atomic Structure and Chemical Bonding important Concepts and Tips

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

Electricity and Magnetism Explained: Key Concepts & Applications

Chemical Properties of Hydrogen - Important Concepts for JEE Exam Preparation

JEE Energetics Important Concepts and Tips for Exam Preparation

JEE Isolation, Preparation and Properties of Non-metals Important Concepts and Tips for Exam Preparation

Trending doubts
JEE Main 2026: Application Form Open, Exam Dates, Syllabus, Eligibility & Question Papers

Derivation of Equation of Trajectory Explained for Students

Hybridisation in Chemistry – Concept, Types & Applications

Understanding the Angle of Deviation in a Prism

Understanding Collisions: Types and Examples for Students

How to Convert a Galvanometer into an Ammeter or Voltmeter

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Ideal and Non-Ideal Solutions Explained for Class 12 Chemistry

Degree of Dissociation: Meaning, Formula, Calculation & Uses

Understanding Electromagnetic Waves and Their Importance

Understanding the Electric Field of a Uniformly Charged Ring

Understanding Average and RMS Value in Electrical Circuits

