
If a and b are two non - zero, non - collinear vectors, then 2[a b i]i + 2[a b j]j + 2[a b k]k + [a b a] is equal to?
1) 2 (a × b)
2) a × b
3) a + b
4) None of these
Answer
164.7k+ views
Hint: In this type of question, we should know about the “vectors”. Vector is defined as a physical quantity that has both magnitude and direction. It is often represented by an arrow whose length is proportional to the magnitude of the quantity and whose direction is the same as that of the quantity.
Complete step by step Solution:
Right hand rule
Using the right-hand rule, the vector product's direction may be shown. The thumb of your right hand will point in the direction of the vector product if you curl your fingers in a rotation from vector A to vector B.
The product of the magnitudes and the cosine of the smaller angle between the two vectors, A and B, is known as the scalar or dot product of the two vectors.
Properties of dot products and cross products are:
$\overset{\hat{\ }}{\mathop{i}}\,.\overset{\hat{\ }}{\mathop{i}}\,=\overset{\hat{\ }}{\mathop{j}}\,.\overset{\hat{\ }}{\mathop{j}}\,=\overset{\hat{\ }}{\mathop{k}}\,.\overset{\hat{\ }}{\mathop{k}}\,=1$
$\overset{\hat{\ }}{\mathop{i}}\,.\overset{\hat{\ }}{\mathop{j}}\,=\overset{\hat{\ }}{\mathop{j}}\,.\overset{\hat{\ }}{\mathop{k}}\,=\overset{\hat{\ }}{\mathop{k}}\,.\overset{\hat{\ }}{\mathop{i}}\,=0$
$\overset{\hat{\ }}{\mathop{i}}\,\times \overset{\hat{\ }}{\mathop{i}}\,=\overset{\hat{\ }}{\mathop{j}}\,\times \overset{\hat{\ }}{\mathop{j}}\,=\overset{\hat{\ }}{\mathop{k}}\,\times \overset{\hat{\ }}{\mathop{k}}\,=0$
$\overset{\hat{\ }}{\mathop{i}}\,\times \overset{\hat{\ }}{\mathop{j}}\,=\overset{\hat{\ }}{\mathop{k}}\,;\overset{\hat{\ }}{\mathop{j}}\,\times \overset{\hat{\ }}{\mathop{k}}\,=\overset{\hat{\ }}{\mathop{i}}\,;\overset{\hat{\ }}{\mathop{k}}\,\times \overset{\hat{\ }}{\mathop{i}}\,=\overset{\hat{\ }}{\mathop{j}}\,$
Now, we have, 2[a b i]i + 2[a b j]j + 2[a b k]k + [a b a]
Suppose, $\overset{\to }{\mathop{a}}\,={{a}_{1}}i+{{a}_{2}}j+{{a}_{3}}k$
$\overset{\to }{\mathop{b}}\,={{b}_{1}}i+{{b}_{2}}j+{{b}_{3}}k$
=\[2\left[ a\text{ }b\text{ }i \right]i\text{ }+\text{ }2\left[ a\text{ }b\text{ }j \right]j\text{ }+\text{ }2\left[ a\text{ }b\text{ }k \right]k\text{ }+\text{ }\left[ a\text{ }b\text{ }a \right]\]
=\[2\left( a\text{ }\times \text{ }b \right)\text{ }i\text{ }.\text{ }i\text{ }+\text{ }2\left( a\text{ }\times \text{ }b \right)\text{ }j\text{ }.\text{ }j\text{ }\text{ }2\left( a\text{ }\times \text{ }b \right)\text{ }k\text{ }.\text{ }k\text{ }+\text{ }0\] $(\because [aab]=0)$
=\[2\left( a\text{ }\times \text{ }b \right)\text{ }+\text{ }2\left( a\text{ }\times \text{ }b \right)\text{ }\text{ }2\left( a\text{ }\times \text{ }b \right)\] ($\overset{\hat{\ }}{\mathop{i}}\,.\overset{\hat{\ }}{\mathop{i}}\,=\overset{\hat{\ }}{\mathop{j}}\,.\overset{\hat{\ }}{\mathop{j}}\,=\overset{\hat{\ }}{\mathop{k}}\,.\overset{\hat{\ }}{\mathop{k}}\,=1$)
=$2(a\times b)$
Therefore, the correct option is (1).
Note: Many real-world scenarios involving force or velocity can be applied to vectors. Take the forces on a boat crossing a river as an illustration. A force is produced in one direction by the boat's motor and another in another by the river's stream.
Complete step by step Solution:
Right hand rule
Using the right-hand rule, the vector product's direction may be shown. The thumb of your right hand will point in the direction of the vector product if you curl your fingers in a rotation from vector A to vector B.
The product of the magnitudes and the cosine of the smaller angle between the two vectors, A and B, is known as the scalar or dot product of the two vectors.
Properties of dot products and cross products are:
$\overset{\hat{\ }}{\mathop{i}}\,.\overset{\hat{\ }}{\mathop{i}}\,=\overset{\hat{\ }}{\mathop{j}}\,.\overset{\hat{\ }}{\mathop{j}}\,=\overset{\hat{\ }}{\mathop{k}}\,.\overset{\hat{\ }}{\mathop{k}}\,=1$
$\overset{\hat{\ }}{\mathop{i}}\,.\overset{\hat{\ }}{\mathop{j}}\,=\overset{\hat{\ }}{\mathop{j}}\,.\overset{\hat{\ }}{\mathop{k}}\,=\overset{\hat{\ }}{\mathop{k}}\,.\overset{\hat{\ }}{\mathop{i}}\,=0$
$\overset{\hat{\ }}{\mathop{i}}\,\times \overset{\hat{\ }}{\mathop{i}}\,=\overset{\hat{\ }}{\mathop{j}}\,\times \overset{\hat{\ }}{\mathop{j}}\,=\overset{\hat{\ }}{\mathop{k}}\,\times \overset{\hat{\ }}{\mathop{k}}\,=0$
$\overset{\hat{\ }}{\mathop{i}}\,\times \overset{\hat{\ }}{\mathop{j}}\,=\overset{\hat{\ }}{\mathop{k}}\,;\overset{\hat{\ }}{\mathop{j}}\,\times \overset{\hat{\ }}{\mathop{k}}\,=\overset{\hat{\ }}{\mathop{i}}\,;\overset{\hat{\ }}{\mathop{k}}\,\times \overset{\hat{\ }}{\mathop{i}}\,=\overset{\hat{\ }}{\mathop{j}}\,$
Now, we have, 2[a b i]i + 2[a b j]j + 2[a b k]k + [a b a]
Suppose, $\overset{\to }{\mathop{a}}\,={{a}_{1}}i+{{a}_{2}}j+{{a}_{3}}k$
$\overset{\to }{\mathop{b}}\,={{b}_{1}}i+{{b}_{2}}j+{{b}_{3}}k$
=\[2\left[ a\text{ }b\text{ }i \right]i\text{ }+\text{ }2\left[ a\text{ }b\text{ }j \right]j\text{ }+\text{ }2\left[ a\text{ }b\text{ }k \right]k\text{ }+\text{ }\left[ a\text{ }b\text{ }a \right]\]
=\[2\left( a\text{ }\times \text{ }b \right)\text{ }i\text{ }.\text{ }i\text{ }+\text{ }2\left( a\text{ }\times \text{ }b \right)\text{ }j\text{ }.\text{ }j\text{ }\text{ }2\left( a\text{ }\times \text{ }b \right)\text{ }k\text{ }.\text{ }k\text{ }+\text{ }0\] $(\because [aab]=0)$
=\[2\left( a\text{ }\times \text{ }b \right)\text{ }+\text{ }2\left( a\text{ }\times \text{ }b \right)\text{ }\text{ }2\left( a\text{ }\times \text{ }b \right)\] ($\overset{\hat{\ }}{\mathop{i}}\,.\overset{\hat{\ }}{\mathop{i}}\,=\overset{\hat{\ }}{\mathop{j}}\,.\overset{\hat{\ }}{\mathop{j}}\,=\overset{\hat{\ }}{\mathop{k}}\,.\overset{\hat{\ }}{\mathop{k}}\,=1$)
=$2(a\times b)$
Therefore, the correct option is (1).
Note: Many real-world scenarios involving force or velocity can be applied to vectors. Take the forces on a boat crossing a river as an illustration. A force is produced in one direction by the boat's motor and another in another by the river's stream.
Recently Updated Pages
Environmental Chemistry Chapter for JEE Main Chemistry

Geometry of Complex Numbers – Topics, Reception, Audience and Related Readings

JEE Main 2021 July 25 Shift 1 Question Paper with Answer Key

JEE Main 2021 July 22 Shift 2 Question Paper with Answer Key

Get P Block Elements for JEE Main 2025 with clear Explanations

Sets, Relations and Functions Chapter For JEE Main Maths

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

Atomic Structure - Electrons, Protons, Neutrons and Atomic Models

Displacement-Time Graph and Velocity-Time Graph for JEE

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Learn About Angle Of Deviation In Prism: JEE Main Physics 2025

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

Degree of Dissociation and Its Formula With Solved Example for JEE

Instantaneous Velocity - Formula based Examples for JEE

JEE Main 2025: Conversion of Galvanometer Into Ammeter And Voltmeter in Physics

JEE Advanced 2025 Notes
