Courses
Courses for Kids
Free study material
Offline Centres
More
Store Icon
Store

If A and B are two matrices such that ${\text{AB = B}}$and${\text{BA = A}}$, then${{\text{A}}^2} + {{\text{B}}^2}$ is equal to
$
  {\text{a}}{\text{. 2AB }} \\
  {\text{b}}{\text{. 2BA}} \\
  {\text{c}}{\text{. A}} + {\text{B}} \\
  {\text{d}}{\text{. AB}} \\
$

seo-qna
Last updated date: 24th Jul 2024
Total views: 64.2k
Views today: 1.64k
Answer
VerifiedVerified
64.2k+ views
Hint: - In this question use the associative property of the matrix which is \[X\left( {YZ} \right) = \left( {XY} \right)Z\].

Given:
$AB = {\text{ }}B{\text{ }}..............\left( 1 \right),{\text{ }}BA = A...............\left( 2 \right)$
Now we have to find out the value of ${A^2} + {B^2}$
$ \Rightarrow {A^2} + {B^2} = AA + BB$
Now from equation (1) and (2) substitute the values of matrix B and A in above equation we have,
$ \Rightarrow {A^2} + {B^2} = A\left( {BA} \right) + B\left( {AB} \right)$
Now, from the associative property of matrix which is \[X\left( {YZ} \right) = \left( {XY} \right)Z\] we have,
$ \Rightarrow {A^2} + {B^2} = \left( {AB} \right)A + \left( {BA} \right)B$ (Associative property)
Now, again from equation (1) and (2) substitute the values of matrix AB and BA in above equation we have,
$ \Rightarrow {A^2} + {B^2} = BA + AB$
Now, again from equation (1) and (2) substitute the values of matrix AB and BA in above equation we have,
$ \Rightarrow {A^2} + {B^2} = A + B$
Hence, option (c) is the correct answer.

Note: -In these types of questions the key concept we have to remember is that always remember the properties of multiplication of matrix which is stated above then simplify the matrix according to given conditions then apply the associative property of matrix to get the required answer.