
If A and B are two matrices such that A + B and AB are both defined, then
A . A and B are two matrices not necessarily of the same order
B. A and B are square matrices of the same order
C. Number of columns of A is equal to the number of rows of B
D. None of these
Answer
208.2k+ views
Hint: Here in this question, A and B are two matrices in which addition and multiplication are both defined. For this, we suppose two matrices of the same order then by using the addition and the multiplication property, we find out the option which follows our answer.
Complete step by step Solution:
Given A and B are two matrices that A + B and Ab are both defined.
Let A be a matrix of order $({{a}_{1}}\times {{a}_{2}})$ and B be a matrix of order $({{b}_{1}}\times {{b}_{2}})$
As A.B is defined
The number of columns in A = number of rows in B
Then ${{a}_{2}}={{b}_{1}}$………………………………… (1)
Since A + B is defined
The number of rows in A = number of rows in B
And the number of columns in A = number of columns in B
Then ${{a}_{1}}={{b}_{1}}$ and ${{a}_{2}}={{b}_{2}}$……………………………..(2)
From (1) and (2), we have,
${{a}_{1}}={{a}_{2}}={{b}_{1}}={{b}_{2}}=n$
So A is of order $n\times n$ and B is of order $n\times n$
We know matrices that have the same number of rows and the same number of columns as square matrices.
So A and B are square matrices of the same order.
Therefore, the correct option is (B).
Note: We must remember that the addition of matrices is possible only when the number of rows is equal to the number of columns of the given matrix. Also, multiplication matrices are of the same order.
For example: the matrices $B(4\times 3)$$A(4\times 4)$and $B(4\times 4)$are possible for both the operations.
If we take $A(4\times 3)$ and $B(3\times 4)$, multiplication is possible but the addition is not possible.
Similarly in matrices $A(4\times 3)$and in $B(4\times 3)$,addition is possible but multiplication is not possible.
Complete step by step Solution:
Given A and B are two matrices that A + B and Ab are both defined.
Let A be a matrix of order $({{a}_{1}}\times {{a}_{2}})$ and B be a matrix of order $({{b}_{1}}\times {{b}_{2}})$
As A.B is defined
The number of columns in A = number of rows in B
Then ${{a}_{2}}={{b}_{1}}$………………………………… (1)
Since A + B is defined
The number of rows in A = number of rows in B
And the number of columns in A = number of columns in B
Then ${{a}_{1}}={{b}_{1}}$ and ${{a}_{2}}={{b}_{2}}$……………………………..(2)
From (1) and (2), we have,
${{a}_{1}}={{a}_{2}}={{b}_{1}}={{b}_{2}}=n$
So A is of order $n\times n$ and B is of order $n\times n$
We know matrices that have the same number of rows and the same number of columns as square matrices.
So A and B are square matrices of the same order.
Therefore, the correct option is (B).
Note: We must remember that the addition of matrices is possible only when the number of rows is equal to the number of columns of the given matrix. Also, multiplication matrices are of the same order.
For example: the matrices $B(4\times 3)$$A(4\times 4)$and $B(4\times 4)$are possible for both the operations.
If we take $A(4\times 3)$ and $B(3\times 4)$, multiplication is possible but the addition is not possible.
Similarly in matrices $A(4\times 3)$and in $B(4\times 3)$,addition is possible but multiplication is not possible.
Recently Updated Pages
JEE Isolation, Preparation and Properties of Non-metals Important Concepts and Tips for Exam Preparation

JEE Energetics Important Concepts and Tips for Exam Preparation

JEE Main 2022 (July 28th Shift 1) Physics Question Paper with Answer Key

JEE Main 2023 (January 29th Shift 2) Physics Question Paper with Answer Key

JEE Main 2022 (July 26th Shift 2) Maths Question Paper with Answer Key

JEE Main 2023 (January 25th Shift 1) Physics Question Paper with Answer Key

Trending doubts
JEE Main 2026: Application Form Open, Exam Dates, Syllabus, Eligibility & Question Papers

Equation of Trajectory in Projectile Motion: Derivation & Proof

JEE Main Correction Window 2026- Edit Form Details, Dates and Link

Atomic Structure: Definition, Models, and Examples

Angle of Deviation in a Prism – Formula, Diagram & Applications

Hybridisation in Chemistry – Concept, Types & Applications

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Collision: Meaning, Types & Examples in Physics

How to Convert a Galvanometer into an Ammeter or Voltmeter

Average and RMS Value in Physics: Formula, Comparison & Application

Ideal and Non-Ideal Solutions Explained for Class 12 Chemistry

Degree of Dissociation: Meaning, Formula, Calculation & Uses

