
If $A$ and \[B\] are two events such that \[P(A)=0.4\] \[P(A+B)=0.7\], \[P(A\cap B)=0.2\] and, $P(B)=?$
A. $0.1$
B. $0.3$
C. $0.5$
D. None of these
Answer
161.1k+ views
Hint: In this question, we have to find probability of event \[B\]. In this question, the addition theorem on probability is used. All the given values are substituted in the addition theorem of probability to find the required probability.
Formula Used: The probability is calculated by,
\[P(E)=\dfrac{n(E)}{n(S)}\]
\[n(E)\] is the number of favorable outcomes and \[n(S)\] is the total number of outcomes.
If there are two events in a sample space, then the addition theorem on probability is given by
\[P(A+B)=P(A)+P(B)-P(A\cap B)\]
In independent events, the occurrence of one event is not affected by the occurrence of another event.
Two events $A$ and \[B\] are said to be independent events if $P(A\cap B)=P(A)\cdot P(B)$ and are said to be mutually exclusive if $P(A\cap B)=\Phi $.
Complete step by step solution: Consider two events $A$ and \[B\].
It is given that,
\[P(A)=0.4\]
\[P(A+B)=0.7\]
\[P(A\cap B)=0.2\]
The addition theorem on probability is given by
\[P(A+B)=P(A)+P(B)-P(A\cap B)\]
Then, by substituting in the formula, we get
\[\begin{align}
& P(A+B)=P(A)+P(B)-P(A\cap B) \\
& \text{ 0}\text{.7}=0.4+P(B)-0.2 \\
& \text{ }\Rightarrow P(B)=0.7-0.2=0.5 \\
\end{align}\]
Option ‘C’ is correct
Note: In this question, the addition theorem on probability is applied for finding the required probability. By substituting the appropriate values, the required probability is calculated.
Formula Used: The probability is calculated by,
\[P(E)=\dfrac{n(E)}{n(S)}\]
\[n(E)\] is the number of favorable outcomes and \[n(S)\] is the total number of outcomes.
If there are two events in a sample space, then the addition theorem on probability is given by
\[P(A+B)=P(A)+P(B)-P(A\cap B)\]
In independent events, the occurrence of one event is not affected by the occurrence of another event.
Two events $A$ and \[B\] are said to be independent events if $P(A\cap B)=P(A)\cdot P(B)$ and are said to be mutually exclusive if $P(A\cap B)=\Phi $.
Complete step by step solution: Consider two events $A$ and \[B\].
It is given that,
\[P(A)=0.4\]
\[P(A+B)=0.7\]
\[P(A\cap B)=0.2\]
The addition theorem on probability is given by
\[P(A+B)=P(A)+P(B)-P(A\cap B)\]
Then, by substituting in the formula, we get
\[\begin{align}
& P(A+B)=P(A)+P(B)-P(A\cap B) \\
& \text{ 0}\text{.7}=0.4+P(B)-0.2 \\
& \text{ }\Rightarrow P(B)=0.7-0.2=0.5 \\
\end{align}\]
Option ‘C’ is correct
Note: In this question, the addition theorem on probability is applied for finding the required probability. By substituting the appropriate values, the required probability is calculated.
Recently Updated Pages
If there are 25 railway stations on a railway line class 11 maths JEE_Main

Minimum area of the circle which touches the parabolas class 11 maths JEE_Main

Which of the following is the empty set A x x is a class 11 maths JEE_Main

The number of ways of selecting two squares on chessboard class 11 maths JEE_Main

Find the points common to the hyperbola 25x2 9y2 2-class-11-maths-JEE_Main

A box contains 6 balls which may be all of different class 11 maths JEE_Main

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation

Displacement-Time Graph and Velocity-Time Graph for JEE

Degree of Dissociation and Its Formula With Solved Example for JEE

Free Radical Substitution Mechanism of Alkanes for JEE Main 2025

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

JEE Advanced 2025: Dates, Registration, Syllabus, Eligibility Criteria and More

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

NCERT Solutions for Class 11 Maths Chapter 4 Complex Numbers and Quadratic Equations

NCERT Solutions for Class 11 Maths In Hindi Chapter 1 Sets

NCERT Solutions for Class 11 Maths Chapter 6 Permutations and Combinations
