
If $5\cos^{- 1}\left( {\dfrac{{1 - {x^2}}}{{1 + {x^2}}}} \right) + 7\sin^{- 1}\left( {\dfrac{{2x}}{{\left( {1 + {x^2}} \right)}}} \right) – 4\tan^{- 1}\left( {\dfrac{{2x}}{{\left( {1 - {x^2}} \right)}}} \right) - \tan^{- 1}x = 5\pi $ , then what is the value of $x$?
A. $ - \sqrt 3 $
B. $\sqrt 2 $
C. 2
D. $\sqrt 3 $
Answer
164.1k+ views
Hint: First, substitute $x = \tan y$ in the given inverse trigonometric equation. Then simplify the equation using the trigonometric identities of $\sin2A, \cos2A$, and $\tan2A$. After that, use the inverse trigonometric identities and further simplify the equation. In the end, substitute the value of $y$ in the equation and simplify it to reach the required answer.
Formula Used:
$\sin2A = \dfrac{{2\tan A}}{{1 + \tan^{2}A}}$
$\cos2A = \dfrac{{1 - \tan^{2}A}}{{1 + \tan^{2}A}}$
$\tan2A = \dfrac{{2\tan A}}{{1 - \tan^{2}A}}$
Complete step by step solution:
The given trigonometric equation is $5\cos^{- 1}\left( {\dfrac{{1 - {x^2}}}{{1 + {x^2}}}} \right) + 7\sin^{- 1}\left( {\dfrac{{2x}}{{\left( {1 + {x^2}} \right)}}} \right) – 4\tan^{- 1}\left( {\dfrac{{2x}}{{\left( {1 - {x^2}} \right)}}} \right) - \tan^{- 1}x = 5\pi $.
Let’s simplify the above equation.
Let consider, $x = \tan y$
substitute $x = \tan y$ in the given equation.
$5\cos^{- 1}\left( {\dfrac{{1 - \tan^{2}y}}{{1 + \tan^{2}y}}} \right) + 7\sin^{- 1}\left( {\dfrac{{2\tan y}}{{\left( {1 + \tan^{2}y} \right)}}} \right) – 4\tan^{- 1}\left( {\dfrac{{2\tan y}}{{\left( {1 - \tan^{2}y} \right)}}} \right) - \tan^{- 1}\left( {\tan y} \right) = 5\pi $
Now apply the trigonometric identities of $\sin2A, \cos2A$, and $\tan2A$.
$5\cos^{- 1}\left( {\cos2y} \right) + 7\sin^{- 1}\left( {\sin2y} \right) – 4\tan^{- 1}\left( {\tan2y} \right) - \tan^{- 1}\left( {\tan y} \right) = 5\pi $
Apply the inverse trigonometric properties $\cos^{- 1}\left( {\cos A} \right) = A$, $\sin^{- 1}\left( {\sin A} \right) = A$, and$\tan^{- 1}\left( {\tan A} \right) = A$ in the above equation.
$5\left( {2y} \right) + 7\left( {2y} \right) - 4\left( {2y} \right) - \left( y \right) = 5\pi $
$ \Rightarrow 10y + 14y - 8y - y = 5\pi $
$ \Rightarrow 15y = 5\pi $
Divide both sides by $15$.
$y = \dfrac{\pi }{3}$
Now re-substitute the value of $y$ in the above equation.
$\tan^{- 1}x = \dfrac{\pi }{3}$
$ \Rightarrow x = \tan\dfrac{\pi }{3}$
$ \Rightarrow x = \sqrt 3 $ $\left[ {\because \tan\dfrac{\pi }{3} = \sqrt 3 } \right]$
Option ‘D’ is correct
Note: Students often try to differentiate the expression right from the beginning, which is technically correct but becomes excessively long and more prone to mistakes. To solve this type of question, first convert the equation into $\tan$ and simplify it using the trigonometric identities.
Formula Used:
$\sin2A = \dfrac{{2\tan A}}{{1 + \tan^{2}A}}$
$\cos2A = \dfrac{{1 - \tan^{2}A}}{{1 + \tan^{2}A}}$
$\tan2A = \dfrac{{2\tan A}}{{1 - \tan^{2}A}}$
Complete step by step solution:
The given trigonometric equation is $5\cos^{- 1}\left( {\dfrac{{1 - {x^2}}}{{1 + {x^2}}}} \right) + 7\sin^{- 1}\left( {\dfrac{{2x}}{{\left( {1 + {x^2}} \right)}}} \right) – 4\tan^{- 1}\left( {\dfrac{{2x}}{{\left( {1 - {x^2}} \right)}}} \right) - \tan^{- 1}x = 5\pi $.
Let’s simplify the above equation.
Let consider, $x = \tan y$
substitute $x = \tan y$ in the given equation.
$5\cos^{- 1}\left( {\dfrac{{1 - \tan^{2}y}}{{1 + \tan^{2}y}}} \right) + 7\sin^{- 1}\left( {\dfrac{{2\tan y}}{{\left( {1 + \tan^{2}y} \right)}}} \right) – 4\tan^{- 1}\left( {\dfrac{{2\tan y}}{{\left( {1 - \tan^{2}y} \right)}}} \right) - \tan^{- 1}\left( {\tan y} \right) = 5\pi $
Now apply the trigonometric identities of $\sin2A, \cos2A$, and $\tan2A$.
$5\cos^{- 1}\left( {\cos2y} \right) + 7\sin^{- 1}\left( {\sin2y} \right) – 4\tan^{- 1}\left( {\tan2y} \right) - \tan^{- 1}\left( {\tan y} \right) = 5\pi $
Apply the inverse trigonometric properties $\cos^{- 1}\left( {\cos A} \right) = A$, $\sin^{- 1}\left( {\sin A} \right) = A$, and$\tan^{- 1}\left( {\tan A} \right) = A$ in the above equation.
$5\left( {2y} \right) + 7\left( {2y} \right) - 4\left( {2y} \right) - \left( y \right) = 5\pi $
$ \Rightarrow 10y + 14y - 8y - y = 5\pi $
$ \Rightarrow 15y = 5\pi $
Divide both sides by $15$.
$y = \dfrac{\pi }{3}$
Now re-substitute the value of $y$ in the above equation.
$\tan^{- 1}x = \dfrac{\pi }{3}$
$ \Rightarrow x = \tan\dfrac{\pi }{3}$
$ \Rightarrow x = \sqrt 3 $ $\left[ {\because \tan\dfrac{\pi }{3} = \sqrt 3 } \right]$
Option ‘D’ is correct
Note: Students often try to differentiate the expression right from the beginning, which is technically correct but becomes excessively long and more prone to mistakes. To solve this type of question, first convert the equation into $\tan$ and simplify it using the trigonometric identities.
Recently Updated Pages
Geometry of Complex Numbers – Topics, Reception, Audience and Related Readings

JEE Main 2021 July 25 Shift 1 Question Paper with Answer Key

JEE Main 2021 July 22 Shift 2 Question Paper with Answer Key

JEE Main 2025 Session 2: Exam Date, Admit Card, Syllabus, & More

JEE Atomic Structure and Chemical Bonding important Concepts and Tips

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

Trending doubts
Degree of Dissociation and Its Formula With Solved Example for JEE

Instantaneous Velocity - Formula based Examples for JEE

JEE Main Chemistry Question Paper with Answer Keys and Solutions

JEE Main Reservation Criteria 2025: SC, ST, EWS, and PwD Candidates

What is Normality in Chemistry?

Chemistry Electronic Configuration of D Block Elements: JEE Main 2025

Other Pages
Total MBBS Seats in India 2025: Government College Seat Matrix

NEET Total Marks 2025: Important Information and Key Updates

Neet Cut Off 2025 for MBBS in Tamilnadu: AIQ & State Quota Analysis

Karnataka NEET Cut off 2025 - Category Wise Cut Off Marks

NEET Marks vs Rank 2024|How to Calculate?

NEET 2025: All Major Changes in Application Process, Pattern and More
