
If $5\cos^{- 1}\left( {\dfrac{{1 - {x^2}}}{{1 + {x^2}}}} \right) + 7\sin^{- 1}\left( {\dfrac{{2x}}{{\left( {1 + {x^2}} \right)}}} \right) – 4\tan^{- 1}\left( {\dfrac{{2x}}{{\left( {1 - {x^2}} \right)}}} \right) - \tan^{- 1}x = 5\pi $ , then what is the value of $x$?
A. $ - \sqrt 3 $
B. $\sqrt 2 $
C. 2
D. $\sqrt 3 $
Answer
232.8k+ views
Hint: First, substitute $x = \tan y$ in the given inverse trigonometric equation. Then simplify the equation using the trigonometric identities of $\sin2A, \cos2A$, and $\tan2A$. After that, use the inverse trigonometric identities and further simplify the equation. In the end, substitute the value of $y$ in the equation and simplify it to reach the required answer.
Formula Used:
$\sin2A = \dfrac{{2\tan A}}{{1 + \tan^{2}A}}$
$\cos2A = \dfrac{{1 - \tan^{2}A}}{{1 + \tan^{2}A}}$
$\tan2A = \dfrac{{2\tan A}}{{1 - \tan^{2}A}}$
Complete step by step solution:
The given trigonometric equation is $5\cos^{- 1}\left( {\dfrac{{1 - {x^2}}}{{1 + {x^2}}}} \right) + 7\sin^{- 1}\left( {\dfrac{{2x}}{{\left( {1 + {x^2}} \right)}}} \right) – 4\tan^{- 1}\left( {\dfrac{{2x}}{{\left( {1 - {x^2}} \right)}}} \right) - \tan^{- 1}x = 5\pi $.
Let’s simplify the above equation.
Let consider, $x = \tan y$
substitute $x = \tan y$ in the given equation.
$5\cos^{- 1}\left( {\dfrac{{1 - \tan^{2}y}}{{1 + \tan^{2}y}}} \right) + 7\sin^{- 1}\left( {\dfrac{{2\tan y}}{{\left( {1 + \tan^{2}y} \right)}}} \right) – 4\tan^{- 1}\left( {\dfrac{{2\tan y}}{{\left( {1 - \tan^{2}y} \right)}}} \right) - \tan^{- 1}\left( {\tan y} \right) = 5\pi $
Now apply the trigonometric identities of $\sin2A, \cos2A$, and $\tan2A$.
$5\cos^{- 1}\left( {\cos2y} \right) + 7\sin^{- 1}\left( {\sin2y} \right) – 4\tan^{- 1}\left( {\tan2y} \right) - \tan^{- 1}\left( {\tan y} \right) = 5\pi $
Apply the inverse trigonometric properties $\cos^{- 1}\left( {\cos A} \right) = A$, $\sin^{- 1}\left( {\sin A} \right) = A$, and$\tan^{- 1}\left( {\tan A} \right) = A$ in the above equation.
$5\left( {2y} \right) + 7\left( {2y} \right) - 4\left( {2y} \right) - \left( y \right) = 5\pi $
$ \Rightarrow 10y + 14y - 8y - y = 5\pi $
$ \Rightarrow 15y = 5\pi $
Divide both sides by $15$.
$y = \dfrac{\pi }{3}$
Now re-substitute the value of $y$ in the above equation.
$\tan^{- 1}x = \dfrac{\pi }{3}$
$ \Rightarrow x = \tan\dfrac{\pi }{3}$
$ \Rightarrow x = \sqrt 3 $ $\left[ {\because \tan\dfrac{\pi }{3} = \sqrt 3 } \right]$
Option ‘D’ is correct
Note: Students often try to differentiate the expression right from the beginning, which is technically correct but becomes excessively long and more prone to mistakes. To solve this type of question, first convert the equation into $\tan$ and simplify it using the trigonometric identities.
Formula Used:
$\sin2A = \dfrac{{2\tan A}}{{1 + \tan^{2}A}}$
$\cos2A = \dfrac{{1 - \tan^{2}A}}{{1 + \tan^{2}A}}$
$\tan2A = \dfrac{{2\tan A}}{{1 - \tan^{2}A}}$
Complete step by step solution:
The given trigonometric equation is $5\cos^{- 1}\left( {\dfrac{{1 - {x^2}}}{{1 + {x^2}}}} \right) + 7\sin^{- 1}\left( {\dfrac{{2x}}{{\left( {1 + {x^2}} \right)}}} \right) – 4\tan^{- 1}\left( {\dfrac{{2x}}{{\left( {1 - {x^2}} \right)}}} \right) - \tan^{- 1}x = 5\pi $.
Let’s simplify the above equation.
Let consider, $x = \tan y$
substitute $x = \tan y$ in the given equation.
$5\cos^{- 1}\left( {\dfrac{{1 - \tan^{2}y}}{{1 + \tan^{2}y}}} \right) + 7\sin^{- 1}\left( {\dfrac{{2\tan y}}{{\left( {1 + \tan^{2}y} \right)}}} \right) – 4\tan^{- 1}\left( {\dfrac{{2\tan y}}{{\left( {1 - \tan^{2}y} \right)}}} \right) - \tan^{- 1}\left( {\tan y} \right) = 5\pi $
Now apply the trigonometric identities of $\sin2A, \cos2A$, and $\tan2A$.
$5\cos^{- 1}\left( {\cos2y} \right) + 7\sin^{- 1}\left( {\sin2y} \right) – 4\tan^{- 1}\left( {\tan2y} \right) - \tan^{- 1}\left( {\tan y} \right) = 5\pi $
Apply the inverse trigonometric properties $\cos^{- 1}\left( {\cos A} \right) = A$, $\sin^{- 1}\left( {\sin A} \right) = A$, and$\tan^{- 1}\left( {\tan A} \right) = A$ in the above equation.
$5\left( {2y} \right) + 7\left( {2y} \right) - 4\left( {2y} \right) - \left( y \right) = 5\pi $
$ \Rightarrow 10y + 14y - 8y - y = 5\pi $
$ \Rightarrow 15y = 5\pi $
Divide both sides by $15$.
$y = \dfrac{\pi }{3}$
Now re-substitute the value of $y$ in the above equation.
$\tan^{- 1}x = \dfrac{\pi }{3}$
$ \Rightarrow x = \tan\dfrac{\pi }{3}$
$ \Rightarrow x = \sqrt 3 $ $\left[ {\because \tan\dfrac{\pi }{3} = \sqrt 3 } \right]$
Option ‘D’ is correct
Note: Students often try to differentiate the expression right from the beginning, which is technically correct but becomes excessively long and more prone to mistakes. To solve this type of question, first convert the equation into $\tan$ and simplify it using the trigonometric identities.
Recently Updated Pages
JEE Main 2023 April 6 Shift 1 Question Paper with Answer Key

JEE Main 2023 April 6 Shift 2 Question Paper with Answer Key

JEE Main 2023 (January 31 Evening Shift) Question Paper with Solutions [PDF]

JEE Main 2023 January 30 Shift 2 Question Paper with Answer Key

JEE Main 2023 January 25 Shift 1 Question Paper with Answer Key

JEE Main 2023 January 24 Shift 2 Question Paper with Answer Key

Trending doubts
JEE Main 2026: Session 2 Registration Open, City Intimation Slip, Exam Dates, Syllabus & Eligibility

JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

Understanding the Angle of Deviation in a Prism

Hybridisation in Chemistry – Concept, Types & Applications

How to Convert a Galvanometer into an Ammeter or Voltmeter

Understanding the Electric Field of a Uniformly Charged Ring

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

Derivation of Equation of Trajectory Explained for Students

Understanding Electromagnetic Waves and Their Importance

Understanding How a Current Loop Acts as a Magnetic Dipole

Understanding Average and RMS Value in Electrical Circuits

