
If $5\cos^{- 1}\left( {\dfrac{{1 - {x^2}}}{{1 + {x^2}}}} \right) + 7\sin^{- 1}\left( {\dfrac{{2x}}{{\left( {1 + {x^2}} \right)}}} \right) – 4\tan^{- 1}\left( {\dfrac{{2x}}{{\left( {1 - {x^2}} \right)}}} \right) - \tan^{- 1}x = 5\pi $ , then what is the value of $x$?
A. $ - \sqrt 3 $
B. $\sqrt 2 $
C. 2
D. $\sqrt 3 $
Answer
218.1k+ views
Hint: First, substitute $x = \tan y$ in the given inverse trigonometric equation. Then simplify the equation using the trigonometric identities of $\sin2A, \cos2A$, and $\tan2A$. After that, use the inverse trigonometric identities and further simplify the equation. In the end, substitute the value of $y$ in the equation and simplify it to reach the required answer.
Formula Used:
$\sin2A = \dfrac{{2\tan A}}{{1 + \tan^{2}A}}$
$\cos2A = \dfrac{{1 - \tan^{2}A}}{{1 + \tan^{2}A}}$
$\tan2A = \dfrac{{2\tan A}}{{1 - \tan^{2}A}}$
Complete step by step solution:
The given trigonometric equation is $5\cos^{- 1}\left( {\dfrac{{1 - {x^2}}}{{1 + {x^2}}}} \right) + 7\sin^{- 1}\left( {\dfrac{{2x}}{{\left( {1 + {x^2}} \right)}}} \right) – 4\tan^{- 1}\left( {\dfrac{{2x}}{{\left( {1 - {x^2}} \right)}}} \right) - \tan^{- 1}x = 5\pi $.
Let’s simplify the above equation.
Let consider, $x = \tan y$
substitute $x = \tan y$ in the given equation.
$5\cos^{- 1}\left( {\dfrac{{1 - \tan^{2}y}}{{1 + \tan^{2}y}}} \right) + 7\sin^{- 1}\left( {\dfrac{{2\tan y}}{{\left( {1 + \tan^{2}y} \right)}}} \right) – 4\tan^{- 1}\left( {\dfrac{{2\tan y}}{{\left( {1 - \tan^{2}y} \right)}}} \right) - \tan^{- 1}\left( {\tan y} \right) = 5\pi $
Now apply the trigonometric identities of $\sin2A, \cos2A$, and $\tan2A$.
$5\cos^{- 1}\left( {\cos2y} \right) + 7\sin^{- 1}\left( {\sin2y} \right) – 4\tan^{- 1}\left( {\tan2y} \right) - \tan^{- 1}\left( {\tan y} \right) = 5\pi $
Apply the inverse trigonometric properties $\cos^{- 1}\left( {\cos A} \right) = A$, $\sin^{- 1}\left( {\sin A} \right) = A$, and$\tan^{- 1}\left( {\tan A} \right) = A$ in the above equation.
$5\left( {2y} \right) + 7\left( {2y} \right) - 4\left( {2y} \right) - \left( y \right) = 5\pi $
$ \Rightarrow 10y + 14y - 8y - y = 5\pi $
$ \Rightarrow 15y = 5\pi $
Divide both sides by $15$.
$y = \dfrac{\pi }{3}$
Now re-substitute the value of $y$ in the above equation.
$\tan^{- 1}x = \dfrac{\pi }{3}$
$ \Rightarrow x = \tan\dfrac{\pi }{3}$
$ \Rightarrow x = \sqrt 3 $ $\left[ {\because \tan\dfrac{\pi }{3} = \sqrt 3 } \right]$
Option ‘D’ is correct
Note: Students often try to differentiate the expression right from the beginning, which is technically correct but becomes excessively long and more prone to mistakes. To solve this type of question, first convert the equation into $\tan$ and simplify it using the trigonometric identities.
Formula Used:
$\sin2A = \dfrac{{2\tan A}}{{1 + \tan^{2}A}}$
$\cos2A = \dfrac{{1 - \tan^{2}A}}{{1 + \tan^{2}A}}$
$\tan2A = \dfrac{{2\tan A}}{{1 - \tan^{2}A}}$
Complete step by step solution:
The given trigonometric equation is $5\cos^{- 1}\left( {\dfrac{{1 - {x^2}}}{{1 + {x^2}}}} \right) + 7\sin^{- 1}\left( {\dfrac{{2x}}{{\left( {1 + {x^2}} \right)}}} \right) – 4\tan^{- 1}\left( {\dfrac{{2x}}{{\left( {1 - {x^2}} \right)}}} \right) - \tan^{- 1}x = 5\pi $.
Let’s simplify the above equation.
Let consider, $x = \tan y$
substitute $x = \tan y$ in the given equation.
$5\cos^{- 1}\left( {\dfrac{{1 - \tan^{2}y}}{{1 + \tan^{2}y}}} \right) + 7\sin^{- 1}\left( {\dfrac{{2\tan y}}{{\left( {1 + \tan^{2}y} \right)}}} \right) – 4\tan^{- 1}\left( {\dfrac{{2\tan y}}{{\left( {1 - \tan^{2}y} \right)}}} \right) - \tan^{- 1}\left( {\tan y} \right) = 5\pi $
Now apply the trigonometric identities of $\sin2A, \cos2A$, and $\tan2A$.
$5\cos^{- 1}\left( {\cos2y} \right) + 7\sin^{- 1}\left( {\sin2y} \right) – 4\tan^{- 1}\left( {\tan2y} \right) - \tan^{- 1}\left( {\tan y} \right) = 5\pi $
Apply the inverse trigonometric properties $\cos^{- 1}\left( {\cos A} \right) = A$, $\sin^{- 1}\left( {\sin A} \right) = A$, and$\tan^{- 1}\left( {\tan A} \right) = A$ in the above equation.
$5\left( {2y} \right) + 7\left( {2y} \right) - 4\left( {2y} \right) - \left( y \right) = 5\pi $
$ \Rightarrow 10y + 14y - 8y - y = 5\pi $
$ \Rightarrow 15y = 5\pi $
Divide both sides by $15$.
$y = \dfrac{\pi }{3}$
Now re-substitute the value of $y$ in the above equation.
$\tan^{- 1}x = \dfrac{\pi }{3}$
$ \Rightarrow x = \tan\dfrac{\pi }{3}$
$ \Rightarrow x = \sqrt 3 $ $\left[ {\because \tan\dfrac{\pi }{3} = \sqrt 3 } \right]$
Option ‘D’ is correct
Note: Students often try to differentiate the expression right from the beginning, which is technically correct but becomes excessively long and more prone to mistakes. To solve this type of question, first convert the equation into $\tan$ and simplify it using the trigonometric identities.
Recently Updated Pages
Chemical Properties of Hydrogen - Important Concepts for JEE Exam Preparation

JEE General Topics in Chemistry Important Concepts and Tips

JEE Atomic Structure and Chemical Bonding important Concepts and Tips

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

JEE Extractive Metallurgy Important Concepts and Tips for Exam Preparation

Algebra Made Easy: Step-by-Step Guide for Students

Trending doubts
JEE Main 2026: Application Form Open, Exam Dates, Syllabus, Eligibility & Question Papers

Derivation of Equation of Trajectory Explained for Students

Hybridisation in Chemistry – Concept, Types & Applications

Understanding the Angle of Deviation in a Prism

Understanding Collisions: Types and Examples for Students

Understanding Atomic Structure for Beginners

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

How to Convert a Galvanometer into an Ammeter or Voltmeter

Understanding Centrifugal Force in Physics

Ideal and Non-Ideal Solutions Explained for Class 12 Chemistry

Degree of Dissociation: Meaning, Formula, Calculation & Uses

Understanding Electromagnetic Waves and Their Importance

