
Highest ionization potential in a period is shown by:
(A) Alkali metals
(B) Transition elements
(C) Halogens
(D) Noble gases
Answer
220.8k+ views
Hint: The closer and more tightly bound an electron is to the nucleus, the more difficult it will be to remove and higher will be its ionization potential. The ionization potential or ionization energy decreases from top to bottom in groups and increases from left to right across a period.
Complete step by step solution:
The ionization energy or ionization energy of an atom is the amount of energy that is required to remove an electron from a mole of atoms in the gas phase. In a periodic table, the ionization potential decreases from top to bottom in groups while it increases when crossing from right to left in a period. It can be understood by the image shown below,

So, the groups further to the right of the periodic table would have greater ionization potential because they are more stable and they do not want to donate its electrons to other atoms and also there is the greater number of protons (positively charged) that attracts the electrons (negatively charged) which are present in the outer shell thereby requiring more energy to remove an electron from the shell.
Thus, concluding noble gases to be having the highest ionization potential. This is shown by the noble gases because an electron is to be removed from a completely filled orbital which further breaks the stable electronic configuration ns2np6 requiring a large amount of energy.
Hence, the correct option will be (D).
Note: Technically the noble gases have the largest ionization potential, but since they are special and it is not often seen that electrons would even be removed from these elements as they rarely react with other elements, you would usually get confused with halogens having the largest ionization potential as they are present before the noble gases in a period in the periodic table.
Complete step by step solution:
The ionization energy or ionization energy of an atom is the amount of energy that is required to remove an electron from a mole of atoms in the gas phase. In a periodic table, the ionization potential decreases from top to bottom in groups while it increases when crossing from right to left in a period. It can be understood by the image shown below,

So, the groups further to the right of the periodic table would have greater ionization potential because they are more stable and they do not want to donate its electrons to other atoms and also there is the greater number of protons (positively charged) that attracts the electrons (negatively charged) which are present in the outer shell thereby requiring more energy to remove an electron from the shell.
Thus, concluding noble gases to be having the highest ionization potential. This is shown by the noble gases because an electron is to be removed from a completely filled orbital which further breaks the stable electronic configuration ns2np6 requiring a large amount of energy.
Hence, the correct option will be (D).
Note: Technically the noble gases have the largest ionization potential, but since they are special and it is not often seen that electrons would even be removed from these elements as they rarely react with other elements, you would usually get confused with halogens having the largest ionization potential as they are present before the noble gases in a period in the periodic table.
Recently Updated Pages
CO2 is a gas while SiO2 is a solid but both are A Covalent class 11 chemistry JEE_Main

The correct IUPAC name of the given compound is A isopropylbenzene class 11 chemistry JEE_Main

How does phenol react with conc Nitric acid Give an class 11 chemistry JEE_Main

Number of sigma and pi bonds in C2 molecule isare A class 11 chemistry JEE_Main

Correct order of basic strength of given amines is class 11 chemistry JEE_Main

The banana bond in diborane is constituted by A 2 Atoms class 11 chemistry JEE_Main

Trending doubts
JEE Main 2026: Application Form Open, Exam Dates, Syllabus, Eligibility & Question Papers

Derivation of Equation of Trajectory Explained for Students

Hybridisation in Chemistry – Concept, Types & Applications

Understanding the Angle of Deviation in a Prism

How to Convert a Galvanometer into an Ammeter or Voltmeter

JEE Main Marking Scheme 2026- Paper-Wise Marks Distribution and Negative Marking Details

Other Pages
NCERT Solutions For Class 11 Chemistry Chapter 7 Redox Reaction

JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Hydrocarbons Class 11 Chemistry Chapter 9 CBSE Notes - 2025-26

Thermodynamics Class 11 Chemistry Chapter 5 CBSE Notes - 2025-26

NCERT Solutions ForClass 11 Chemistry Chapter Chapter 5 Thermodynamics

Equilibrium Class 11 Chemistry Chapter 6 CBSE Notes - 2025-26

