
Highest ionization potential in a period is shown by:
(A) Alkali metals
(B) Transition elements
(C) Halogens
(D) Noble gases
Answer
152.7k+ views
Hint: The closer and more tightly bound an electron is to the nucleus, the more difficult it will be to remove and higher will be its ionization potential. The ionization potential or ionization energy decreases from top to bottom in groups and increases from left to right across a period.
Complete step by step solution:
The ionization energy or ionization energy of an atom is the amount of energy that is required to remove an electron from a mole of atoms in the gas phase. In a periodic table, the ionization potential decreases from top to bottom in groups while it increases when crossing from right to left in a period. It can be understood by the image shown below,

So, the groups further to the right of the periodic table would have greater ionization potential because they are more stable and they do not want to donate its electrons to other atoms and also there is the greater number of protons (positively charged) that attracts the electrons (negatively charged) which are present in the outer shell thereby requiring more energy to remove an electron from the shell.
Thus, concluding noble gases to be having the highest ionization potential. This is shown by the noble gases because an electron is to be removed from a completely filled orbital which further breaks the stable electronic configuration ns2np6 requiring a large amount of energy.
Hence, the correct option will be (D).
Note: Technically the noble gases have the largest ionization potential, but since they are special and it is not often seen that electrons would even be removed from these elements as they rarely react with other elements, you would usually get confused with halogens having the largest ionization potential as they are present before the noble gases in a period in the periodic table.
Complete step by step solution:
The ionization energy or ionization energy of an atom is the amount of energy that is required to remove an electron from a mole of atoms in the gas phase. In a periodic table, the ionization potential decreases from top to bottom in groups while it increases when crossing from right to left in a period. It can be understood by the image shown below,

So, the groups further to the right of the periodic table would have greater ionization potential because they are more stable and they do not want to donate its electrons to other atoms and also there is the greater number of protons (positively charged) that attracts the electrons (negatively charged) which are present in the outer shell thereby requiring more energy to remove an electron from the shell.
Thus, concluding noble gases to be having the highest ionization potential. This is shown by the noble gases because an electron is to be removed from a completely filled orbital which further breaks the stable electronic configuration ns2np6 requiring a large amount of energy.
Hence, the correct option will be (D).
Note: Technically the noble gases have the largest ionization potential, but since they are special and it is not often seen that electrons would even be removed from these elements as they rarely react with other elements, you would usually get confused with halogens having the largest ionization potential as they are present before the noble gases in a period in the periodic table.
Recently Updated Pages
JEE Main 2022 (June 29th Shift 2) Maths Question Paper with Answer Key

JEE Main 2023 (January 25th Shift 1) Maths Question Paper with Answer Key

JEE Main 2022 (July 29th Shift 1) Maths Question Paper with Answer Key

JEE Main 2022 (July 26th Shift 2) Chemistry Question Paper with Answer Key

JEE Main 2022 (June 26th Shift 2) Maths Question Paper with Answer Key

JEE Main 2022 (June 29th Shift 1) Physics Question Paper with Answer Key

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation

Degree of Dissociation and Its Formula With Solved Example for JEE

Learn About Angle Of Deviation In Prism: JEE Main Physics 2025

Electrical Field of Charged Spherical Shell - JEE

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

JEE Advanced 2025: Dates, Registration, Syllabus, Eligibility Criteria and More

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

NCERT Solutions for Class 11 Chemistry In Hindi Chapter 1 Some Basic Concepts of Chemistry

Thermodynamics Class 11 Notes: CBSE Chapter 5

Displacement-Time Graph and Velocity-Time Graph for JEE
