
Given that $ABCD$ is a convex quadrilateral. $3,4,5$ and $6$ points are marked on the sides $AB,BC,CD$ and $DA$ respectively. The no. of triangles with vertices on different sides are?
A. $270$
B. $220$
C. $282$
D. $342$
Answer
217.5k+ views
Hint: In this question, for determining the number of triangles with vertices on different sides, we have to consider four different possibilities of vertices. For this, we have to use the concept of combination. After that, we can find the total of all the possibilities.
Complete step by step solution:
We know that there $3$ points on$AB$, $4$ points on $BC$, $5$ points on $CD$, and $6$ points on $AC$.
Here, we need to consider three points from different sides of a convex quadrilateral that consists of $3,4,5$and $6$points on sides $AB,BC,CD$and $DA$respectively.
So, consider the following four possibilities of vertices using the concept of combination.
1) $AB,BC,CD$
Thus, we get
$
{}^3{C_1} \times {}^4{C_1} \times {}^5{C_1} \\
\Rightarrow \dfrac{{3!}}{{1!\left( {3 - 1} \right)!}} \times \dfrac{{4!}}{{1!\left( {4 - 1} \right)!}} \times \dfrac{{5!}}{{1!\left( {5 - 1} \right)!}} \\
\Rightarrow \dfrac{{3!}}{{1!\left( 2 \right)!}} \times \dfrac{{4!}}{{1!\left( 3 \right)!}} \times \dfrac{{5!}}{{1!\left( 4 \right)!}} \\
\Rightarrow 3 \times 4 \times 5 \\
\Rightarrow 60 \\
$
2) $BC,CD,DA$
Thus, we get
$
{}^4{C_1} \times {}^5{C_1} \times {}^6{C_1} \\
\Rightarrow \dfrac{{4!}}{{1!\left( {4 - 1} \right)!}} \times \dfrac{{5!}}{{1!\left( {5 - 1} \right)!}} \times \dfrac{{6!}}{{1!\left( {6 - 1} \right)!}} \\
\Rightarrow \dfrac{{4!}}{{1!\left( 3 \right)!}} \times \dfrac{{5!}}{{1!\left( 4 \right)!}} \times \dfrac{{6!}}{{1!\left( 5 \right)!}} \\
\Rightarrow 4 \times 5 \times 6 \\
\Rightarrow 120 \\
$
3) $CD,DA,AB$
Thus, we get
$
{}^5{C_1} \times {}^6{C_1} \times {}^3{C_1} \\
\Rightarrow \dfrac{{5!}}{{1!\left( {5 - 1} \right)!}} \times \dfrac{{6!}}{{1!\left( {6 - 1} \right)!}} \times \dfrac{{3!}}{{1!\left( {3 - 1} \right)!}} \\
\Rightarrow \dfrac{{5!}}{{1!\left( 4 \right)!}} \times \dfrac{{6!}}{{1!\left( 5 \right)!}} \times \dfrac{{3!}}{{1!\left( 2 \right)!}} \\
\Rightarrow 5 \times 6 \times 3 \\
\Rightarrow 90 \\
$
4) $DA,AB,BC$
Thus, we get
$
{}^6{C_1} \times {}^3{C_1} \times {}^4{C_1} \\
\Rightarrow \dfrac{{6!}}{{1!\left( {6 - 1} \right)!}} \times \dfrac{{3!}}{{1!\left( {3 - 1} \right)!}} \times \dfrac{{4!}}{{1!\left( {4 - 1} \right)!}} \\
\Rightarrow \dfrac{{6!}}{{1!\left( 5 \right)!}} \times \dfrac{{3!}}{{1!\left( 2 \right)!}} \times \dfrac{{4!}}{{1!\left( 3 \right)!}} \\
\Rightarrow 6 \times 3 \times 4 \\
\Rightarrow 72 \\
$
Now, we will add these values to find the number of triangles.
Thus, we get
${\text{Number of triangles }} = {\text{ }}60 + 120 + 90 + 72 = 342$
Thus, there are $342$ triangles with vertices on different sides.
Option ‘D’ is correct
Additional Information: Combinations are a mathematical technique of picking items or numbers from a set or group of things in such a manner that the sequence of the objects is irrelevant.
Note: Many students make mistakes in understanding the term convex quadrilateral. A convex quadrilateral is a four-sided polygon with inner angles of fewer than $180$ degrees. Also, the two diagonals of a convex quadrilateral are fully contained inside the figure.
Complete step by step solution:
We know that there $3$ points on$AB$, $4$ points on $BC$, $5$ points on $CD$, and $6$ points on $AC$.
Here, we need to consider three points from different sides of a convex quadrilateral that consists of $3,4,5$and $6$points on sides $AB,BC,CD$and $DA$respectively.
So, consider the following four possibilities of vertices using the concept of combination.
1) $AB,BC,CD$
Thus, we get
$
{}^3{C_1} \times {}^4{C_1} \times {}^5{C_1} \\
\Rightarrow \dfrac{{3!}}{{1!\left( {3 - 1} \right)!}} \times \dfrac{{4!}}{{1!\left( {4 - 1} \right)!}} \times \dfrac{{5!}}{{1!\left( {5 - 1} \right)!}} \\
\Rightarrow \dfrac{{3!}}{{1!\left( 2 \right)!}} \times \dfrac{{4!}}{{1!\left( 3 \right)!}} \times \dfrac{{5!}}{{1!\left( 4 \right)!}} \\
\Rightarrow 3 \times 4 \times 5 \\
\Rightarrow 60 \\
$
2) $BC,CD,DA$
Thus, we get
$
{}^4{C_1} \times {}^5{C_1} \times {}^6{C_1} \\
\Rightarrow \dfrac{{4!}}{{1!\left( {4 - 1} \right)!}} \times \dfrac{{5!}}{{1!\left( {5 - 1} \right)!}} \times \dfrac{{6!}}{{1!\left( {6 - 1} \right)!}} \\
\Rightarrow \dfrac{{4!}}{{1!\left( 3 \right)!}} \times \dfrac{{5!}}{{1!\left( 4 \right)!}} \times \dfrac{{6!}}{{1!\left( 5 \right)!}} \\
\Rightarrow 4 \times 5 \times 6 \\
\Rightarrow 120 \\
$
3) $CD,DA,AB$
Thus, we get
$
{}^5{C_1} \times {}^6{C_1} \times {}^3{C_1} \\
\Rightarrow \dfrac{{5!}}{{1!\left( {5 - 1} \right)!}} \times \dfrac{{6!}}{{1!\left( {6 - 1} \right)!}} \times \dfrac{{3!}}{{1!\left( {3 - 1} \right)!}} \\
\Rightarrow \dfrac{{5!}}{{1!\left( 4 \right)!}} \times \dfrac{{6!}}{{1!\left( 5 \right)!}} \times \dfrac{{3!}}{{1!\left( 2 \right)!}} \\
\Rightarrow 5 \times 6 \times 3 \\
\Rightarrow 90 \\
$
4) $DA,AB,BC$
Thus, we get
$
{}^6{C_1} \times {}^3{C_1} \times {}^4{C_1} \\
\Rightarrow \dfrac{{6!}}{{1!\left( {6 - 1} \right)!}} \times \dfrac{{3!}}{{1!\left( {3 - 1} \right)!}} \times \dfrac{{4!}}{{1!\left( {4 - 1} \right)!}} \\
\Rightarrow \dfrac{{6!}}{{1!\left( 5 \right)!}} \times \dfrac{{3!}}{{1!\left( 2 \right)!}} \times \dfrac{{4!}}{{1!\left( 3 \right)!}} \\
\Rightarrow 6 \times 3 \times 4 \\
\Rightarrow 72 \\
$
Now, we will add these values to find the number of triangles.
Thus, we get
${\text{Number of triangles }} = {\text{ }}60 + 120 + 90 + 72 = 342$
Thus, there are $342$ triangles with vertices on different sides.
Option ‘D’ is correct
Additional Information: Combinations are a mathematical technique of picking items or numbers from a set or group of things in such a manner that the sequence of the objects is irrelevant.
Note: Many students make mistakes in understanding the term convex quadrilateral. A convex quadrilateral is a four-sided polygon with inner angles of fewer than $180$ degrees. Also, the two diagonals of a convex quadrilateral are fully contained inside the figure.
Recently Updated Pages
Arithmetic, Geometric & Harmonic Progressions Explained

Cartesian Form of Vector Explained: Formula, Examples & Uses

Apparent Frequency Explained: Formula, Uses & Examples

Calorimetry: Definition, Principles & Calculations

Centrifugal Force Explained: Definition, Formula & Examples

Charge in a Magnetic Field: Definition, Formula & Examples

Trending doubts
JEE Main 2026: Application Form Open, Exam Dates, Syllabus, Eligibility & Question Papers

Derivation of Equation of Trajectory Explained for Students

Hybridisation in Chemistry – Concept, Types & Applications

Understanding the Angle of Deviation in a Prism

Understanding Collisions: Types and Examples for Students

How to Convert a Galvanometer into an Ammeter or Voltmeter

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

NCERT Solutions for Class 11 Maths Chapter 10 Conic Sections

NCERT Solutions for Class 11 Maths Chapter 9 Straight Lines

NCERT Solutions For Class 11 Maths Chapter 8 Sequences And Series

NCERT Solutions For Class 11 Maths Chapter 12 Limits And Derivatives

Understanding Atomic Structure for Beginners

