
What is the general solution of the differential equation \[\dfrac{{dy}}{{dx}} = \dfrac{{{x^2}}}{{{y^2}}}\]?
A. \[{x^3} - {y^3} = c\]
B. \[{x^3} + {y^3} = c\]
C. \[{x^2} + {y^2} = c\]
D. \[{x^2} - {y^2} = c\]
Answer
164.7k+ views
Hint: Here, the first order differential equation is given. First, simplify the given equation by rearranging the terms. Then, integrate both sides of the equation with respect to the corresponding variables. In the end, solve the integrals by using the standard integration formula and get the general solution of the differential equation.
Formula Used: \[\int {{x^n}dx} = \dfrac{{{x^{n + 1}}}}{{n + 1}} + c\]
Complete step by step solution: The given differential equation is \[\dfrac{{dy}}{{dx}} = \dfrac{{{x^2}}}{{{y^2}}}\].
Simplify the given equation by cross multiplying the denominators.
\[{y^2}dy = {x^2}dx\]
Now integrate both sides with respect to the corresponding variables.
\[\int {{y^2}dy} = \int {{x^2}dx} \]
Apply the integration formula \[\int {{x^n}dx} = \dfrac{{{x^{n + 1}}}}{{n + 1}} + c\] on both sides.
We get,
\[\dfrac{{{y^3}}}{3} = \dfrac{{{x^3}}}{3} + \dfrac{{{c^3}}}{3}\]
Simplify the equation.
Multiply both sides by 3.
\[ Rightarrow {y^3} = {x^3} + {c_1}^3\]
\[ Rightarrow {y^3} = {x^3} + c\]
\[ \Rightarrow {y^3} - {x^3} = c\] or \[{x^3} - {y^3} = c\]
Therefore, the general solution of the differential equation \[\dfrac{{dy}}{{dx}} = \dfrac{{{x^2}}}{{{y^2}}}\] is \[{x^3} - {y^3} = c\].
Option ‘A’ is correct
Note: Students often do mistake to integrating \[\int {{x^n}} dx\]. They apply the formula \[\int {{x^n}} dx = {x^{n + 1}} + c\], which is incorrect formula. They forget to divide the term \[{x^{n + 1}}\] by \[n + 1\] The correct formula is \[\int {{x^n}} dx = \dfrac{{{x^{n + 1}}}}{{n + 1}} + c\].
Formula Used: \[\int {{x^n}dx} = \dfrac{{{x^{n + 1}}}}{{n + 1}} + c\]
Complete step by step solution: The given differential equation is \[\dfrac{{dy}}{{dx}} = \dfrac{{{x^2}}}{{{y^2}}}\].
Simplify the given equation by cross multiplying the denominators.
\[{y^2}dy = {x^2}dx\]
Now integrate both sides with respect to the corresponding variables.
\[\int {{y^2}dy} = \int {{x^2}dx} \]
Apply the integration formula \[\int {{x^n}dx} = \dfrac{{{x^{n + 1}}}}{{n + 1}} + c\] on both sides.
We get,
\[\dfrac{{{y^3}}}{3} = \dfrac{{{x^3}}}{3} + \dfrac{{{c^3}}}{3}\]
Simplify the equation.
Multiply both sides by 3.
\[ Rightarrow {y^3} = {x^3} + {c_1}^3\]
\[ Rightarrow {y^3} = {x^3} + c\]
\[ \Rightarrow {y^3} - {x^3} = c\] or \[{x^3} - {y^3} = c\]
Therefore, the general solution of the differential equation \[\dfrac{{dy}}{{dx}} = \dfrac{{{x^2}}}{{{y^2}}}\] is \[{x^3} - {y^3} = c\].
Option ‘A’ is correct
Note: Students often do mistake to integrating \[\int {{x^n}} dx\]. They apply the formula \[\int {{x^n}} dx = {x^{n + 1}} + c\], which is incorrect formula. They forget to divide the term \[{x^{n + 1}}\] by \[n + 1\] The correct formula is \[\int {{x^n}} dx = \dfrac{{{x^{n + 1}}}}{{n + 1}} + c\].
Recently Updated Pages
Geometry of Complex Numbers – Topics, Reception, Audience and Related Readings

JEE Main 2021 July 25 Shift 1 Question Paper with Answer Key

JEE Main 2021 July 22 Shift 2 Question Paper with Answer Key

JEE Main 2025 Session 2: Exam Date, Admit Card, Syllabus, & More

JEE Atomic Structure and Chemical Bonding important Concepts and Tips

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

Trending doubts
Atomic Structure - Electrons, Protons, Neutrons and Atomic Models

Learn About Angle Of Deviation In Prism: JEE Main Physics 2025

JEE Main Chemistry Question Paper with Answer Keys and Solutions

JoSAA JEE Main & Advanced 2025 Counselling: Registration Dates, Documents, Fees, Seat Allotment & Cut‑offs

NIT Raipur Cut-off of Previous Years and Expected for 2025

JEE Main Eligibility Criteria 2025

Other Pages
NCERT Solutions for Class 11 Maths Chapter 6 Permutations and Combinations

JEE Advanced 2025 Notes

Total MBBS Seats in India 2025: Government College Seat Matrix

NEET Total Marks 2025: Important Information and Key Updates

Neet Cut Off 2025 for MBBS in Tamilnadu: AIQ & State Quota Analysis

Karnataka NEET Cut off 2025 - Category Wise Cut Off Marks
