
From a heap containing 15 pairs of shoes,10 shoes are selected at random. The probability that there is no complete pair in the selected shoes is
$
{\text{A}}{\text{. }}\dfrac{{^{30}{{\text{C}}_{10}} - {(^{15}}{{\text{C}}_{10}}){2^{10}}}}{{^{30}{{\text{C}}_{10}}}} \\
{\text{B}}{\text{. }}\dfrac{{^{15}{{\text{C}}_{10}}({2^{10}})}}{{^{30}{{\text{C}}_{10}}}} \\
{\text{C}}{\text{. }}\dfrac{{^{30}{{\text{C}}_{10}} - {2^{15}}}}{{^{30}{{\text{C}}_{10}}}} \\
{\text{D}}{\text{. }}\dfrac{{^{15}{{\text{C}}_{10}}}}{{^{30}{{\text{C}}_{10}}}} \\
$
Answer
135k+ views
Hint:-Use the concept of both probability and combinations. The probability is the ratio of favourable outcome to the total number of outcomes.
Given, a heap is containing 15 pairs of shoes. We need to find the probability of selecting 10 shoes at random with no complete pair.
So, total numbers of shoes are 15(2) i.e. 30 shoes.
Probability is the ratio of number of ways possible to the total number of outcomes.
i.e. Probability = $\dfrac{{{\text{no}}{\text{. of ways possible}}}}{{{\text{total no}}{\text{. of outcome}}}}$ --(1)
For selecting the shoes from a heap, we need to know the concept of combination.
A combination is selection of all or part of a set of objects, without regard to order of selection. It is represented as $^{\text{n}}{{\text{C}}_{\text{r}}}$ where n is the number of total objects and r is the number of objects to be selected.
And, $^{\text{n}}{{\text{C}}_{\text{r}}} = \dfrac{{{\text{n}}!}}{{{\text{r}}!\left( {{\text{n}} - {\text{r}}} \right)!}}$ --(2)
Where n! =${\text{n}} \times {\text{(n - 1)}} \times {\text{(n - 2)}}...{\text{2}} \times {\text{1}}$ and similarly r! = ${\text{r}} \times {\text{(r - 1)}} \times {\text{(r - 2)}}...{\text{2}} \times {\text{1}}$
Now, for finding the probability we need to find the number of ways the selection of 10 shoes is possible.
No. of ways possible for selection of 10 pairs randomly from 15 pairs is $^{15}{{\text{C}}_{10}}$ and for selecting a shoe from each pair can be given by ${{(^2}{{\text{C}}_1})^{}}$. Since, we have sorted 10 pairs. So, we need to select shoes from each pair . So, total possibility of selection of 10 shoe from 10 pairs will be ${{(^2}{{\text{C}}_1})^{10}}$
So, number of ways possible = $^{15}{{\text{C}}_{10}} \times $${{(^2}{{\text{C}}_1})^{10}}$
Total number of possible outcomes = selecting 10 shoes randomly from 30 shoes
=$^{30}{{\text{C}}_{10}}$
Putting both the value in equation (1) we get
Probability = $\dfrac{{^{15}{{\text{C}}_{10}} \times {{{(^2}{{\text{C}}_1})}^{10}}}}{{^{30}{{\text{C}}_{10}}}}$ --(3)
Now, ${{(^2}{{\text{C}}_1})^{}}$ = $\dfrac{{2!}}{{1!\left( {2 - 1} \right)!}}$=$\dfrac{{2 \times 1}}{{1 \times 1}}$= 2
Putting the value of ${{(^2}{{\text{C}}_1})^{}}$in the equation (3) , we get
Probability = $\dfrac{{^{15}{{\text{C}}_{10}} \times {{(2)}^{10}}}}{{^{30}{{\text{C}}_{10}}}}$
Hence, option (b) is the correct answer.
Note:- In these types of questions , we need to remember the concept of both probability and combinations. While applying a combination formula, we need to remember that a similar entity’s count can be placed in the formula i.e. if n = total no. of shoe’s pair then r = no. of selected pair of shoes or if n = total no. of shoes then r = no. of selected shoes.
Given, a heap is containing 15 pairs of shoes. We need to find the probability of selecting 10 shoes at random with no complete pair.
So, total numbers of shoes are 15(2) i.e. 30 shoes.
Probability is the ratio of number of ways possible to the total number of outcomes.
i.e. Probability = $\dfrac{{{\text{no}}{\text{. of ways possible}}}}{{{\text{total no}}{\text{. of outcome}}}}$ --(1)
For selecting the shoes from a heap, we need to know the concept of combination.
A combination is selection of all or part of a set of objects, without regard to order of selection. It is represented as $^{\text{n}}{{\text{C}}_{\text{r}}}$ where n is the number of total objects and r is the number of objects to be selected.
And, $^{\text{n}}{{\text{C}}_{\text{r}}} = \dfrac{{{\text{n}}!}}{{{\text{r}}!\left( {{\text{n}} - {\text{r}}} \right)!}}$ --(2)
Where n! =${\text{n}} \times {\text{(n - 1)}} \times {\text{(n - 2)}}...{\text{2}} \times {\text{1}}$ and similarly r! = ${\text{r}} \times {\text{(r - 1)}} \times {\text{(r - 2)}}...{\text{2}} \times {\text{1}}$
Now, for finding the probability we need to find the number of ways the selection of 10 shoes is possible.
No. of ways possible for selection of 10 pairs randomly from 15 pairs is $^{15}{{\text{C}}_{10}}$ and for selecting a shoe from each pair can be given by ${{(^2}{{\text{C}}_1})^{}}$. Since, we have sorted 10 pairs. So, we need to select shoes from each pair . So, total possibility of selection of 10 shoe from 10 pairs will be ${{(^2}{{\text{C}}_1})^{10}}$
So, number of ways possible = $^{15}{{\text{C}}_{10}} \times $${{(^2}{{\text{C}}_1})^{10}}$
Total number of possible outcomes = selecting 10 shoes randomly from 30 shoes
=$^{30}{{\text{C}}_{10}}$
Putting both the value in equation (1) we get
Probability = $\dfrac{{^{15}{{\text{C}}_{10}} \times {{{(^2}{{\text{C}}_1})}^{10}}}}{{^{30}{{\text{C}}_{10}}}}$ --(3)
Now, ${{(^2}{{\text{C}}_1})^{}}$ = $\dfrac{{2!}}{{1!\left( {2 - 1} \right)!}}$=$\dfrac{{2 \times 1}}{{1 \times 1}}$= 2
Putting the value of ${{(^2}{{\text{C}}_1})^{}}$in the equation (3) , we get
Probability = $\dfrac{{^{15}{{\text{C}}_{10}} \times {{(2)}^{10}}}}{{^{30}{{\text{C}}_{10}}}}$
Hence, option (b) is the correct answer.
Note:- In these types of questions , we need to remember the concept of both probability and combinations. While applying a combination formula, we need to remember that a similar entity’s count can be placed in the formula i.e. if n = total no. of shoe’s pair then r = no. of selected pair of shoes or if n = total no. of shoes then r = no. of selected shoes.
Recently Updated Pages
JEE Main 2025 Session 2 Form Correction (Closed) – What Can Be Edited

What are examples of Chemical Properties class 10 chemistry JEE_Main

JEE Main 2025 Session 2 Schedule Released – Check Important Details Here!

JEE Main 2025 Session 2 Admit Card – Release Date & Direct Download Link

JEE Main 2025 Session 2 Registration (Closed) - Link, Last Date & Fees

JEE Mains Result 2025 NTA NIC – Check Your Score Now!

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Degree of Dissociation and Its Formula With Solved Example for JEE

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation

Elastic Collisions in One Dimension - JEE Important Topic

Displacement-Time Graph and Velocity-Time Graph for JEE

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

JEE Advanced 2024 Syllabus Weightage

The area of an expanding rectangle is increasing at class 12 maths JEE_Main

JEE Main Chemistry Question Paper with Answer Keys and Solutions

Free Radical Substitution Mechanism of Alkanes for JEE Main 2025

JEE Main 2025: Conversion of Galvanometer Into Ammeter And Voltmeter in Physics
