
From a balloon rising vertically upward at $5\,m/s$ a stone is thrown up at $10\,m/s$ relative to the balloon. Its velocity with respect to the ground after $2s$ is. $(g = 10\,m/{s^2})$
(A) $0\,m/s$
(B) $20\,m/s$
(C) $10\,m/s$
(D) $5\,m/s$
Answer
131.4k+ views
Hint: We will find the initial velocity of the balloon which is the addition of the initial velocity of the stone and the balloon as given in the question. Next, we will use the displacement equation for time $t = 2s$ to get the displacement of the stone. We will calculate the velocity using the displacement in the equation ${v^2} = {u^2} + 2aS$.
Formula used: Laws of motion equation
$S = ut + \dfrac{1}{2}a{t^2}$ and
${v^2} = {u^2} + 2aS$.
Complete step by step answer::
It is given that the balloon is rising vertically upwards with a velocity of $5\,m/s$. This is the initial velocity of the balloon and it does not change. From this balloon, we throw a stone at a speed of $10\,m/s$ upwards, in the same direction as that in which the balloon is travelling.
Thus the initial velocity of the stone is $15\,m/s$, since the speed of the balloon will get added to it. Now we have to find the velocity of the balloon at the time $t = 2s$. For this, we will use the laws of motion equation
$S = ut + \dfrac{1}{2}a{t^2}$,
where $S$ is the required displacement.
Substituting the value of $t = 2s$ and the initial velocity of $u = 15\,m/s$ in the above equation, we get $S = (15\,m/s)(2s) + \dfrac{1}{2}( - 10\,m/{s^2}) \times {(2s)^2}$
$ \Rightarrow S = 20\,m$.
Next, we will use
${v^2} = {u^2} + 2aS$, where
$ \Rightarrow {v^2} = {(15\,m/s)^2} + 2( - 10\,m/{s^2})(20\,m) = {(5\,m/s)^2}$
Thus the magnitude of the velocity is
$v = 5\,m/s$
This is the velocity of the stone with respect to the ground after $2s$.
Therefore, the correct answer is option (D).
Note: The initial velocity of the stone needs to be found carefully since the reference frame should be with respect to the ground. Thus we add the velocity of the balloon with respect to the ground with the velocity of the stone with respect to the balloon. Here we will add the two velocities and not subtract, since both the velocities are directed towards the same direction and not opposite or at any other angle.
Formula used: Laws of motion equation
$S = ut + \dfrac{1}{2}a{t^2}$ and
${v^2} = {u^2} + 2aS$.
Complete step by step answer::
It is given that the balloon is rising vertically upwards with a velocity of $5\,m/s$. This is the initial velocity of the balloon and it does not change. From this balloon, we throw a stone at a speed of $10\,m/s$ upwards, in the same direction as that in which the balloon is travelling.
Thus the initial velocity of the stone is $15\,m/s$, since the speed of the balloon will get added to it. Now we have to find the velocity of the balloon at the time $t = 2s$. For this, we will use the laws of motion equation
$S = ut + \dfrac{1}{2}a{t^2}$,
where $S$ is the required displacement.
Substituting the value of $t = 2s$ and the initial velocity of $u = 15\,m/s$ in the above equation, we get $S = (15\,m/s)(2s) + \dfrac{1}{2}( - 10\,m/{s^2}) \times {(2s)^2}$
$ \Rightarrow S = 20\,m$.
Next, we will use
${v^2} = {u^2} + 2aS$, where
$ \Rightarrow {v^2} = {(15\,m/s)^2} + 2( - 10\,m/{s^2})(20\,m) = {(5\,m/s)^2}$
Thus the magnitude of the velocity is
$v = 5\,m/s$
This is the velocity of the stone with respect to the ground after $2s$.
Therefore, the correct answer is option (D).
Note: The initial velocity of the stone needs to be found carefully since the reference frame should be with respect to the ground. Thus we add the velocity of the balloon with respect to the ground with the velocity of the stone with respect to the balloon. Here we will add the two velocities and not subtract, since both the velocities are directed towards the same direction and not opposite or at any other angle.
Recently Updated Pages
A steel rail of length 5m and area of cross section class 11 physics JEE_Main

At which height is gravity zero class 11 physics JEE_Main

A nucleus of mass m + Delta m is at rest and decays class 11 physics JEE_MAIN

A wave is travelling along a string At an instant the class 11 physics JEE_Main

The length of a conductor is halved its conductivity class 11 physics JEE_Main

The x t graph of a particle undergoing simple harmonic class 11 physics JEE_MAIN

Trending doubts
Degree of Dissociation and Its Formula With Solved Example for JEE

Displacement-Time Graph and Velocity-Time Graph for JEE

Clemmenson and Wolff Kishner Reductions for JEE

JEE Main 2025 Session 2 Registration Open – Apply Now! Form Link, Last Date and Fees

Molar Conductivity

Raoult's Law with Examples

Other Pages
Waves Class 11 Notes: CBSE Physics Chapter 14

NCERT Solutions for Class 11 Physics Chapter 7 Gravitation

NCERT Solutions for Class 11 Physics Chapter 1 Units and Measurements

NCERT Solutions for Class 11 Physics Chapter 4 Laws of Motion

NCERT Solutions for Class 11 Physics Chapter 8 Mechanical Properties of Solids

NCERT Solutions for Class 11 Physics Chapter 10 Thermal Properties of Matter
