
For the reaction between $\text{KMnO}_{\text{4}}^{{}}$ and ${{\text{H}}_{\text{2}}}{{\text{O}}_{\text{2}}}$, the number of electrons transferred per mole of ${{\text{H}}_{\text{2}}}{{\text{O}}_{\text{2}}}$is?
A) One
B) Two
C) three
D) Four
Answer
219.9k+ views
Hint: This $\text{KMnO}_{\text{4}}^{{}}$is a powerful oxidizing agent in neutral, acidic, and alkaline medium. The ${{\text{H}}_{\text{2}}}{{\text{O}}_{\text{2}}}$is also an oxidizing agent but in the reaction of $\text{KMnO}_{\text{4}}^{{}}$with the ${{\text{H}}_{\text{2}}}{{\text{O}}_{\text{2}}}$.The ${{\text{H}}_{\text{2}}}{{\text{O}}_{\text{2}}}$loses its electron and acts as a reducing agent. In an acidic medium, the $\text{MnO}_{\text{4}}^{-}$ ions involve the addition of 5 electrons and the two peroxide ions give out two electrons.
Complete step by step solution:
The redox reaction is a reaction which is a combination of oxidation and reduction. The one species accepts the electrons and reduces while the other species donates the electron and itself undergoes the oxidation.
During the reaction, we observe the rise in the oxidation state of the reducing agent and fall in the oxidation state of the oxidising agent.
The potassium permanent ions $\text{KMnO}_{\text{4}}^{{}}$ and hydrogen peroxide ${{\text{H}}_{\text{2}}}{{\text{O}}_{\text{2}}}$ are readily available in the laboratory. The permanent ion and the hydrogen peroxide react mainly in an acidic medium maintained by sulphuric acid ${{\text{H}}_{\text{2}}}\text{S}{{\text{O}}_{\text{4}}}$ .
The reaction of $\text{KMnO}_{\text{4}}^{{}}$with the ${{\text{H}}_{\text{2}}}{{\text{O}}_{\text{2}}}$ is also an example of a redox reaction.
The general and unbalanced reaction scheme can be shown as follows:
$\text{KMnO}_{\text{4}}^{{}}\text{ + }{{\text{H}}_{\text{2}}}{{\text{O}}_{\text{2}}}\text{ + }{{\text{H}}_{\text{2}}}\text{S}{{\text{O}}_{\text{4}}}\text{ }\to \text{ }{{\text{O}}_{\text{2}}}\text{ }+\text{ }{{\text{H}}_{\text{2}}}\text{O + MnS}{{\text{O}}_{\text{4}}}\text{ + }{{\text{K}}_{\text{2}}}\text{S}{{\text{O}}_{\text{4}}}$
Here, the $\text{KMnO}_{\text{4}}^{{}}$reacts with the ${{\text{H}}_{\text{2}}}{{\text{O}}_{\text{2}}}$ presence of ${{\text{H}}_{\text{2}}}\text{S}{{\text{O}}_{\text{4}}}$ to generate the oxygen ${{\text{O}}_{\text{2}}}\text{ }$ , ${{\text{H}}_{\text{2}}}\text{O}$, manganese sulfate $\text{MnS}{{\text{O}}_{\text{4}}}$ , and potassium sulfate ${{\text{K}}_{\text{2}}}\text{S}{{\text{O}}_{\text{4}}}$.
Let's balance the redox reaction.
Here, the oxidizing agent which itself undergoes the reduction is $\text{KMnO}_{\text{4}}^{{}}$ or $\text{MnO}_{\text{4}}^{-}$ and reducing agent which itself undergoes the oxidation is ${{\text{H}}_{\text{2}}}{{\text{O}}_{\text{2}}}$ or ${{\text{O}}^{\text{-1}}}$ .
Here, $\text{MnO}_{\text{4}}^{-}$ gains the five electrons and reduced from $\text{M}{{\text{n}}^{\text{+7}}}\to \text{M}{{\text{n}}^{\text{+2}}}$ . The reduction half-reaction is as follows:
$\text{MnO}{}_{\text{4}}^{-}\text{+8}{{\text{H}}^{\text{+}}}\text{+5}{{\text{e}}^{\text{-}}}\to \text{M}{{\text{n}}^{\text{2+}}}\text{+4}{{\text{H}}_{\text{2}}}\text{O}$ (1)
The hydrogen peroxide, ${{\text{H}}_{\text{2}}}{{\text{O}}_{\text{2}}}$ or ${{\text{O}}^{\text{-1}}}$ releases the two electrons and oxidized from ${{\text{O}}^{\text{-1}}}\to {{\text{O}}_{\text{2}}}$. The oxidation half-reaction is as follows:
$\text{2}{{\text{O}}^{\text{-1}}}\to {{\text{O}}_{\text{2}}}\text{ + 2}{{\text{e}}^{-}}$ (2)
Each ${{\text{O}}^{\text{-1}}}$ion donates a single electron and produces ${{\text{O}}_{\text{2}}}$ gas.
Now, multiple equations (1) by 2 and equation (2) by 5 and add the reduction and oxidation half-reaction. We have,
\[\begin{matrix}
\text{2MnO}{}_{\text{4}}^{-}\text{+16}{{\text{H}}^{\text{+}}}\text{+10}{{\text{e}}^{\text{-}}}\to 2\text{M}{{\text{n}}^{\text{2+}}}\text{+8}{{\text{H}}_{\text{2}}}\text{O} \\
\text{ + 10 }{{\text{O}}^{\text{-1}}}\to 5{{\text{O}}_{\text{2}}}\text{ + 10}{{\text{e}}^{-}} \\
\overline{\text{ 2MnO}{}_{\text{4}}^{-}\text{ + 10 }{{\text{O}}^{\text{-1}}}\text{ + 16}{{\text{H}}^{\text{+}}}\to 2\text{M}{{\text{n}}^{\text{2+}}}\text{ + 8}{{\text{H}}_{\text{2}}}\text{O + }5{{\text{O}}_{\text{2}}}\text{ }} \\
{} \\
\end{matrix}\]
Or by adding the necessary ions and the radicals we get,
$\text{2KMnO}_{\text{4}}^{{}}\text{ + 5}{{\text{H}}_{\text{2}}}{{\text{O}}_{\text{2}}}\text{ + 3}{{\text{H}}_{\text{2}}}\text{S}{{\text{O}}_{\text{4}}}\text{ }\to \text{ 5}{{\text{O}}_{\text{2}}}\text{ }+\text{ 8}{{\text{H}}_{\text{2}}}\text{O + 2MnS}{{\text{O}}_{\text{4}}}\text{ + }{{\text{K}}_{\text{2}}}\text{S}{{\text{O}}_{\text{4}}}$
From the oxidation half-reaction, the number of electrons transferred by the one-mole hydrogen peroxide ${{\text{H}}_{\text{2}}}{{\text{O}}_{\text{2}}}$is equal to two.
Hence, (B) is the correct option.
Note: It may be noted that $\text{KMnO}_{\text{4}}^{{}}$ titrations are carried out only in the presence of dil. ${{\text{H}}_{\text{2}}}\text{S}{{\text{O}}_{\text{4}}}$. This is because the oxygen produced from the reaction of $\text{KMnO}_{\text{4}}^{{}}$ with dil. ${{\text{H}}_{\text{2}}}\text{S}{{\text{O}}_{\text{4}}}$ is used for oxidizing the reducing agent. $\text{KMnO}_{\text{4}}^{{}}$ do not produce any oxygen of its own to act as an oxidizing agent. However, it may be noted that the hydrochloric acid $\text{HCl}$ or nitric acid $\text{HN}{{\text{O}}_{\text{3}}}$ cannot be used in place of dil. ${{\text{H}}_{\text{2}}}\text{S}{{\text{O}}_{\text{4}}}$. In case $\text{HCl}$ used, the oxygen produced by the reaction of $\text{KMnO}_{\text{4}}^{{}}$and dil. $\text{HCl}$ will partially use up to oxidize $\text{HCl}$ to chlorine. Hence, $\text{KMnO}_{\text{4}}^{{}}$ titrations are carried out only in the presence of ${{\text{H}}_{\text{2}}}\text{S}{{\text{O}}_{\text{4}}}$.
Complete step by step solution:
The redox reaction is a reaction which is a combination of oxidation and reduction. The one species accepts the electrons and reduces while the other species donates the electron and itself undergoes the oxidation.
During the reaction, we observe the rise in the oxidation state of the reducing agent and fall in the oxidation state of the oxidising agent.
The potassium permanent ions $\text{KMnO}_{\text{4}}^{{}}$ and hydrogen peroxide ${{\text{H}}_{\text{2}}}{{\text{O}}_{\text{2}}}$ are readily available in the laboratory. The permanent ion and the hydrogen peroxide react mainly in an acidic medium maintained by sulphuric acid ${{\text{H}}_{\text{2}}}\text{S}{{\text{O}}_{\text{4}}}$ .
The reaction of $\text{KMnO}_{\text{4}}^{{}}$with the ${{\text{H}}_{\text{2}}}{{\text{O}}_{\text{2}}}$ is also an example of a redox reaction.
The general and unbalanced reaction scheme can be shown as follows:
$\text{KMnO}_{\text{4}}^{{}}\text{ + }{{\text{H}}_{\text{2}}}{{\text{O}}_{\text{2}}}\text{ + }{{\text{H}}_{\text{2}}}\text{S}{{\text{O}}_{\text{4}}}\text{ }\to \text{ }{{\text{O}}_{\text{2}}}\text{ }+\text{ }{{\text{H}}_{\text{2}}}\text{O + MnS}{{\text{O}}_{\text{4}}}\text{ + }{{\text{K}}_{\text{2}}}\text{S}{{\text{O}}_{\text{4}}}$
Here, the $\text{KMnO}_{\text{4}}^{{}}$reacts with the ${{\text{H}}_{\text{2}}}{{\text{O}}_{\text{2}}}$ presence of ${{\text{H}}_{\text{2}}}\text{S}{{\text{O}}_{\text{4}}}$ to generate the oxygen ${{\text{O}}_{\text{2}}}\text{ }$ , ${{\text{H}}_{\text{2}}}\text{O}$, manganese sulfate $\text{MnS}{{\text{O}}_{\text{4}}}$ , and potassium sulfate ${{\text{K}}_{\text{2}}}\text{S}{{\text{O}}_{\text{4}}}$.
Let's balance the redox reaction.
Here, the oxidizing agent which itself undergoes the reduction is $\text{KMnO}_{\text{4}}^{{}}$ or $\text{MnO}_{\text{4}}^{-}$ and reducing agent which itself undergoes the oxidation is ${{\text{H}}_{\text{2}}}{{\text{O}}_{\text{2}}}$ or ${{\text{O}}^{\text{-1}}}$ .
Here, $\text{MnO}_{\text{4}}^{-}$ gains the five electrons and reduced from $\text{M}{{\text{n}}^{\text{+7}}}\to \text{M}{{\text{n}}^{\text{+2}}}$ . The reduction half-reaction is as follows:
$\text{MnO}{}_{\text{4}}^{-}\text{+8}{{\text{H}}^{\text{+}}}\text{+5}{{\text{e}}^{\text{-}}}\to \text{M}{{\text{n}}^{\text{2+}}}\text{+4}{{\text{H}}_{\text{2}}}\text{O}$ (1)
The hydrogen peroxide, ${{\text{H}}_{\text{2}}}{{\text{O}}_{\text{2}}}$ or ${{\text{O}}^{\text{-1}}}$ releases the two electrons and oxidized from ${{\text{O}}^{\text{-1}}}\to {{\text{O}}_{\text{2}}}$. The oxidation half-reaction is as follows:
$\text{2}{{\text{O}}^{\text{-1}}}\to {{\text{O}}_{\text{2}}}\text{ + 2}{{\text{e}}^{-}}$ (2)
Each ${{\text{O}}^{\text{-1}}}$ion donates a single electron and produces ${{\text{O}}_{\text{2}}}$ gas.
Now, multiple equations (1) by 2 and equation (2) by 5 and add the reduction and oxidation half-reaction. We have,
\[\begin{matrix}
\text{2MnO}{}_{\text{4}}^{-}\text{+16}{{\text{H}}^{\text{+}}}\text{+10}{{\text{e}}^{\text{-}}}\to 2\text{M}{{\text{n}}^{\text{2+}}}\text{+8}{{\text{H}}_{\text{2}}}\text{O} \\
\text{ + 10 }{{\text{O}}^{\text{-1}}}\to 5{{\text{O}}_{\text{2}}}\text{ + 10}{{\text{e}}^{-}} \\
\overline{\text{ 2MnO}{}_{\text{4}}^{-}\text{ + 10 }{{\text{O}}^{\text{-1}}}\text{ + 16}{{\text{H}}^{\text{+}}}\to 2\text{M}{{\text{n}}^{\text{2+}}}\text{ + 8}{{\text{H}}_{\text{2}}}\text{O + }5{{\text{O}}_{\text{2}}}\text{ }} \\
{} \\
\end{matrix}\]
Or by adding the necessary ions and the radicals we get,
$\text{2KMnO}_{\text{4}}^{{}}\text{ + 5}{{\text{H}}_{\text{2}}}{{\text{O}}_{\text{2}}}\text{ + 3}{{\text{H}}_{\text{2}}}\text{S}{{\text{O}}_{\text{4}}}\text{ }\to \text{ 5}{{\text{O}}_{\text{2}}}\text{ }+\text{ 8}{{\text{H}}_{\text{2}}}\text{O + 2MnS}{{\text{O}}_{\text{4}}}\text{ + }{{\text{K}}_{\text{2}}}\text{S}{{\text{O}}_{\text{4}}}$
From the oxidation half-reaction, the number of electrons transferred by the one-mole hydrogen peroxide ${{\text{H}}_{\text{2}}}{{\text{O}}_{\text{2}}}$is equal to two.
Hence, (B) is the correct option.
Note: It may be noted that $\text{KMnO}_{\text{4}}^{{}}$ titrations are carried out only in the presence of dil. ${{\text{H}}_{\text{2}}}\text{S}{{\text{O}}_{\text{4}}}$. This is because the oxygen produced from the reaction of $\text{KMnO}_{\text{4}}^{{}}$ with dil. ${{\text{H}}_{\text{2}}}\text{S}{{\text{O}}_{\text{4}}}$ is used for oxidizing the reducing agent. $\text{KMnO}_{\text{4}}^{{}}$ do not produce any oxygen of its own to act as an oxidizing agent. However, it may be noted that the hydrochloric acid $\text{HCl}$ or nitric acid $\text{HN}{{\text{O}}_{\text{3}}}$ cannot be used in place of dil. ${{\text{H}}_{\text{2}}}\text{S}{{\text{O}}_{\text{4}}}$. In case $\text{HCl}$ used, the oxygen produced by the reaction of $\text{KMnO}_{\text{4}}^{{}}$and dil. $\text{HCl}$ will partially use up to oxidize $\text{HCl}$ to chlorine. Hence, $\text{KMnO}_{\text{4}}^{{}}$ titrations are carried out only in the presence of ${{\text{H}}_{\text{2}}}\text{S}{{\text{O}}_{\text{4}}}$.
Recently Updated Pages
Electricity and Magnetism Explained: Key Concepts & Applications

JEE Energetics Important Concepts and Tips for Exam Preparation

JEE Isolation, Preparation and Properties of Non-metals Important Concepts and Tips for Exam Preparation

JEE Main 2021 July 25 Shift 1 Question Paper with Answer Key

JEE Main 2021 July 22 Shift 2 Question Paper with Answer Key

States of Matter Chapter For JEE Main Chemistry

Trending doubts
Understanding Atomic Structure for Beginners

Understanding Centrifugal Force in Physics

JEE Main Marking Scheme 2026- Paper-Wise Marks Distribution and Negative Marking Details

Understanding Electromagnetic Waves and Their Importance

Understanding Entropy Changes in Different Processes

Common Ion Effect: Concept, Applications, and Problem-Solving

Other Pages
NCERT Solutions for Class 11 Chemistry Chapter Chapter 6 Equilibrium

Understanding Excess Pressure Inside a Liquid Drop

Understanding Geostationary and Geosynchronous Satellites

NCERT Solutions For Class 11 Chemistry Chapter 7 Equilibrium in Hindi - 2025-26

NCERT Solutions For Class 11 Chemistry Chapter 8 Redox Reactions in Hindi - 2025-26

Understanding Elastic Collisions in Two Dimensions

