
For the reaction at \[{{\rm{0}}^{\rm{0}}}{\rm{C}}\] and normal pressure:
A. \[{\rm{\Delta H > T\Delta S}}\]
B. \[{\rm{\Delta H = T\Delta S}}\]
C. \[{\rm{\Delta H = \Delta G}}\]
D. \[{\rm{\Delta H}}\]
Answer
162.3k+ views
Hint: Equilibrium may be defined as the state of a process in which the properties like temperature, pressure, and concentration of the system do not show any change with the passage of time.
Complete Step by Step Solution:
Enthalpy change (\[{\rm{\Delta H}}\]) is defined as the total heat content of the system at constant pressure.
Entropy is the extent of disorder of randomness in a system. Entropy change (\[{\rm{\Delta S}}\]) of a substance measures the disorder or randomness in a system.
Gibb’s free energy of a system may be defined as the maximum amount of energy available to a system that can be converted into useful work. In simple words, Gibb’s free energy is the capacity of a system to do useful work. It is denoted by the symbol ‘G’.
Gibb’s free energy equation gives the relationship between change in enthalpy, change in entropy and temperature. The relationship is as given below.
\[{\rm{\Delta G = \Delta H}} - {\rm{T\Delta S}}\]
where, \[{\rm{\Delta G}}\]= change in Gibb’s free energy
\[{\rm{\Delta H = }}\]change in enthalpy
\[{\rm{\Delta S = }}\]change in entropy
\[{\rm{T = }}\]temperature in Kelvin
The given reaction is as:
From the above reaction, it can be said that a state of equilibrium between the condensation of vapours and the evaporation of water has been established. Equilibrium involves two reactions proceeding in opposite directions One of these reactions proceeds from the reactants towards the products and is called a forward reaction. The other reaction proceeds from the products towards the reactants and is called a reverse reaction. There is no further change in the concentrations of the reactants or products when the equilibrium is attained.
Temperature, \[{\rm{T = }}{{\rm{0}}^{\rm{0}}}{\rm{C}}\]
Convert the given temperatures from degree Celsius to Kelvin by using the relationship, \[{\rm{K}}{{\rm{ = }}^{\rm{0}}}{\rm{C}} + 273\]as shown below.
So, the temperature will become as:
\[{\rm{T = }}{{\rm{0}}^{\rm{0}}}{\rm{C = (0 + 273)K = 273K}}\]
At equilibrium, the change in Gibb’s free energy (\[{\rm{\Delta G}}\]) is taken to be zero.
Putting \[{\rm{\Delta G = 0}}\]in the Gibb’s free energy equation we get,
\[\begin{array}{l}{\rm{\Delta G = \Delta H}} - {\rm{T\Delta S}}\\ \Rightarrow {\rm{0 = \Delta H}} - {\rm{T\Delta S}}\\ \Rightarrow {\rm{\Delta H}} = {\rm{T\Delta S}}\end{array}\]
Hence, the correct choice is found to be \[{\rm{\Delta H = T\Delta S}}\]
Therefore, option B is correct.
Note: Gibb’s energy concept is more useful than the entropy concept to know the feasibility of a process because \[{\rm{\Delta G}}\]refers to the system only while \[{\rm{\Delta S}}\]refers to both system and surroundings. Actually, the two opposing reactions, the forward reaction and the reverse reaction are known to proceed simultaneously at equal rates.
Complete Step by Step Solution:
Enthalpy change (\[{\rm{\Delta H}}\]) is defined as the total heat content of the system at constant pressure.
Entropy is the extent of disorder of randomness in a system. Entropy change (\[{\rm{\Delta S}}\]) of a substance measures the disorder or randomness in a system.
Gibb’s free energy of a system may be defined as the maximum amount of energy available to a system that can be converted into useful work. In simple words, Gibb’s free energy is the capacity of a system to do useful work. It is denoted by the symbol ‘G’.
Gibb’s free energy equation gives the relationship between change in enthalpy, change in entropy and temperature. The relationship is as given below.
\[{\rm{\Delta G = \Delta H}} - {\rm{T\Delta S}}\]
where, \[{\rm{\Delta G}}\]= change in Gibb’s free energy
\[{\rm{\Delta H = }}\]change in enthalpy
\[{\rm{\Delta S = }}\]change in entropy
\[{\rm{T = }}\]temperature in Kelvin
The given reaction is as:
From the above reaction, it can be said that a state of equilibrium between the condensation of vapours and the evaporation of water has been established. Equilibrium involves two reactions proceeding in opposite directions One of these reactions proceeds from the reactants towards the products and is called a forward reaction. The other reaction proceeds from the products towards the reactants and is called a reverse reaction. There is no further change in the concentrations of the reactants or products when the equilibrium is attained.
Temperature, \[{\rm{T = }}{{\rm{0}}^{\rm{0}}}{\rm{C}}\]
Convert the given temperatures from degree Celsius to Kelvin by using the relationship, \[{\rm{K}}{{\rm{ = }}^{\rm{0}}}{\rm{C}} + 273\]as shown below.
So, the temperature will become as:
\[{\rm{T = }}{{\rm{0}}^{\rm{0}}}{\rm{C = (0 + 273)K = 273K}}\]
At equilibrium, the change in Gibb’s free energy (\[{\rm{\Delta G}}\]) is taken to be zero.
Putting \[{\rm{\Delta G = 0}}\]in the Gibb’s free energy equation we get,
\[\begin{array}{l}{\rm{\Delta G = \Delta H}} - {\rm{T\Delta S}}\\ \Rightarrow {\rm{0 = \Delta H}} - {\rm{T\Delta S}}\\ \Rightarrow {\rm{\Delta H}} = {\rm{T\Delta S}}\end{array}\]
Hence, the correct choice is found to be \[{\rm{\Delta H = T\Delta S}}\]
Therefore, option B is correct.
Note: Gibb’s energy concept is more useful than the entropy concept to know the feasibility of a process because \[{\rm{\Delta G}}\]refers to the system only while \[{\rm{\Delta S}}\]refers to both system and surroundings. Actually, the two opposing reactions, the forward reaction and the reverse reaction are known to proceed simultaneously at equal rates.
Recently Updated Pages
Two pi and half sigma bonds are present in A N2 + B class 11 chemistry JEE_Main

Which of the following is most stable A Sn2+ B Ge2+ class 11 chemistry JEE_Main

The enolic form of acetone contains a 10sigma bonds class 11 chemistry JEE_Main

The specific heat of metal is 067 Jg Its equivalent class 11 chemistry JEE_Main

The increasing order of a specific charge to mass ratio class 11 chemistry JEE_Main

Which one of the following is used for making shoe class 11 chemistry JEE_Main

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Displacement-Time Graph and Velocity-Time Graph for JEE

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation

JoSAA JEE Main & Advanced 2025 Counselling: Registration Dates, Documents, Fees, Seat Allotment & Cut‑offs

NIT Cutoff Percentile for 2025

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

NCERT Solutions for Class 11 Chemistry In Hindi Chapter 1 Some Basic Concepts of Chemistry

NCERT Solutions for Class 11 Chemistry Chapter 7 Redox Reaction

JEE Advanced 2025: Dates, Registration, Syllabus, Eligibility Criteria and More

Degree of Dissociation and Its Formula With Solved Example for JEE
