
For the matrix \[A = \left[ {\begin{array}{*{20}{c}}
1&1&0 \\
1&2&1 \\
2&1&0
\end{array}} \right]\]which of the following are correct
A. \[{A^3} + 3{A^2} - I = 0\]
B. \[{A^3} - 3{A^2} - I = 0\]
C. \[{A^3} + 2{A^2} - I = 0\]
D. \[{A^3} - {A^2} + I = 0\]
Answer
216k+ views
Hint: In the given problem we first find the value of \[{A^2}\]. Similarly, we find the value of \[{A^3}\] by multiplying \[{A^2}\] with \[A\]. We then perform different operations with \[{A^2}\] and \[{A^3}\] in accordance with the given options to get the correct option.
Formula used:
If \[A = {[{a_{ij}}]_{m \times n}}\] and \[B = {[{b_{ij}}]_{n \times p}}\] then we can say that \[A \times B = C\] where the value of C is
\[C = {[{c_{ij}}]_{m \times p}}\]
Here \[{c_{ij}} = \mathop \sum \limits_{j = 1}^m {a_{ij}}{b_{jk}} = {a_{i1}}{b_{1k}} + {a_{i2}}{b_{2k}} + ........ + {a_{im}}{b_{mk}}\]
Complete step by step solution:
We are given that,
\[A = \left[ {\begin{array}{*{20}{c}}
1&1&0 \\
1&2&1 \\
2&1&0
\end{array}} \right]\]
On squaring A, we get \[{A^2}\]
\[{A^2} = A.A = \left[ {\begin{array}{*{20}{c}}
1&1&0 \\
1&2&1 \\
2&1&0
\end{array}} \right]\left[ {\begin{array}{*{20}{c}}
1&1&0 \\
1&2&1 \\
2&1&0
\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}
2&3&1 \\
5&6&2 \\
3&4&1
\end{array}} \right]\]
On multiplying the scalar 3 with \[{A^2}\]we get,
\[3{A^2} = 3\left[ {\begin{array}{*{20}{c}}
2&3&1 \\
5&6&2 \\
3&4&1
\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}
6&9&3 \\
{15}&{18}&6 \\
9&{12}&3
\end{array}} \right]\]
On multiplying \[{A^2}\] with A we get \[{A^3}\]
\[{A^3} = {A^2}.A = \left[ {\begin{array}{*{20}{c}}
2&3&1 \\
5&6&2 \\
3&4&1
\end{array}} \right]\left[ {\begin{array}{*{20}{c}}
1&1&0 \\
1&2&1 \\
2&1&0
\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}
7&9&3 \\
{15}&{19}&6 \\
9&{12}&4
\end{array}} \right]\]
Therefore \[{A^3} - 3{A^2} = \left[ {\begin{array}{*{20}{c}}
7&9&3 \\
{15}&{19}&6 \\
9&{12}&4
\end{array}} \right] - \left[ {\begin{array}{*{20}{c}}
6&9&3 \\
{15}&{18}&6 \\
9&{12}&3
\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}
1&0&0 \\
0&1&0 \\
0&0&1
\end{array}} \right] = I\]
\[
\\
\Rightarrow {A^3} - 3{A^2} - I = 0 \\
\]
Option B. is the correct answer.
Note: To solve the given problem, one must know to add, subtract and multiply two matrices. One must make sure that the terms are added before giving the resultant value in each position of the resultant matrix during matrix multiplication.
Formula used:
If \[A = {[{a_{ij}}]_{m \times n}}\] and \[B = {[{b_{ij}}]_{n \times p}}\] then we can say that \[A \times B = C\] where the value of C is
\[C = {[{c_{ij}}]_{m \times p}}\]
Here \[{c_{ij}} = \mathop \sum \limits_{j = 1}^m {a_{ij}}{b_{jk}} = {a_{i1}}{b_{1k}} + {a_{i2}}{b_{2k}} + ........ + {a_{im}}{b_{mk}}\]
Complete step by step solution:
We are given that,
\[A = \left[ {\begin{array}{*{20}{c}}
1&1&0 \\
1&2&1 \\
2&1&0
\end{array}} \right]\]
On squaring A, we get \[{A^2}\]
\[{A^2} = A.A = \left[ {\begin{array}{*{20}{c}}
1&1&0 \\
1&2&1 \\
2&1&0
\end{array}} \right]\left[ {\begin{array}{*{20}{c}}
1&1&0 \\
1&2&1 \\
2&1&0
\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}
2&3&1 \\
5&6&2 \\
3&4&1
\end{array}} \right]\]
On multiplying the scalar 3 with \[{A^2}\]we get,
\[3{A^2} = 3\left[ {\begin{array}{*{20}{c}}
2&3&1 \\
5&6&2 \\
3&4&1
\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}
6&9&3 \\
{15}&{18}&6 \\
9&{12}&3
\end{array}} \right]\]
On multiplying \[{A^2}\] with A we get \[{A^3}\]
\[{A^3} = {A^2}.A = \left[ {\begin{array}{*{20}{c}}
2&3&1 \\
5&6&2 \\
3&4&1
\end{array}} \right]\left[ {\begin{array}{*{20}{c}}
1&1&0 \\
1&2&1 \\
2&1&0
\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}
7&9&3 \\
{15}&{19}&6 \\
9&{12}&4
\end{array}} \right]\]
Therefore \[{A^3} - 3{A^2} = \left[ {\begin{array}{*{20}{c}}
7&9&3 \\
{15}&{19}&6 \\
9&{12}&4
\end{array}} \right] - \left[ {\begin{array}{*{20}{c}}
6&9&3 \\
{15}&{18}&6 \\
9&{12}&3
\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}
1&0&0 \\
0&1&0 \\
0&0&1
\end{array}} \right] = I\]
\[
\\
\Rightarrow {A^3} - 3{A^2} - I = 0 \\
\]
Option B. is the correct answer.
Note: To solve the given problem, one must know to add, subtract and multiply two matrices. One must make sure that the terms are added before giving the resultant value in each position of the resultant matrix during matrix multiplication.
Recently Updated Pages
JEE Atomic Structure and Chemical Bonding important Concepts and Tips

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

Electricity and Magnetism Explained: Key Concepts & Applications

Chemical Properties of Hydrogen - Important Concepts for JEE Exam Preparation

JEE Energetics Important Concepts and Tips for Exam Preparation

JEE Isolation, Preparation and Properties of Non-metals Important Concepts and Tips for Exam Preparation

Trending doubts
JEE Main 2026: Application Form Open, Exam Dates, Syllabus, Eligibility & Question Papers

JEE Main Correction Window 2026 Session 1 Dates Announced - Edit Form Details, Dates and Link

Derivation of Equation of Trajectory Explained for Students

Hybridisation in Chemistry – Concept, Types & Applications

Understanding the Angle of Deviation in a Prism

Understanding Collisions: Types and Examples for Students

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

How to Convert a Galvanometer into an Ammeter or Voltmeter

Atomic Structure: Definition, Models, and Examples

Ideal and Non-Ideal Solutions Explained for Class 12 Chemistry

Degree of Dissociation: Meaning, Formula, Calculation & Uses

Understanding Electromagnetic Waves and Their Importance

