
For the matrix \[A = \left[ {\begin{array}{*{20}{c}}
1&1&0 \\
1&2&1 \\
2&1&0
\end{array}} \right]\]which of the following are correct
A. \[{A^3} + 3{A^2} - I = 0\]
B. \[{A^3} - 3{A^2} - I = 0\]
C. \[{A^3} + 2{A^2} - I = 0\]
D. \[{A^3} - {A^2} + I = 0\]
Answer
232.8k+ views
Hint: In the given problem we first find the value of \[{A^2}\]. Similarly, we find the value of \[{A^3}\] by multiplying \[{A^2}\] with \[A\]. We then perform different operations with \[{A^2}\] and \[{A^3}\] in accordance with the given options to get the correct option.
Formula used:
If \[A = {[{a_{ij}}]_{m \times n}}\] and \[B = {[{b_{ij}}]_{n \times p}}\] then we can say that \[A \times B = C\] where the value of C is
\[C = {[{c_{ij}}]_{m \times p}}\]
Here \[{c_{ij}} = \mathop \sum \limits_{j = 1}^m {a_{ij}}{b_{jk}} = {a_{i1}}{b_{1k}} + {a_{i2}}{b_{2k}} + ........ + {a_{im}}{b_{mk}}\]
Complete step by step solution:
We are given that,
\[A = \left[ {\begin{array}{*{20}{c}}
1&1&0 \\
1&2&1 \\
2&1&0
\end{array}} \right]\]
On squaring A, we get \[{A^2}\]
\[{A^2} = A.A = \left[ {\begin{array}{*{20}{c}}
1&1&0 \\
1&2&1 \\
2&1&0
\end{array}} \right]\left[ {\begin{array}{*{20}{c}}
1&1&0 \\
1&2&1 \\
2&1&0
\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}
2&3&1 \\
5&6&2 \\
3&4&1
\end{array}} \right]\]
On multiplying the scalar 3 with \[{A^2}\]we get,
\[3{A^2} = 3\left[ {\begin{array}{*{20}{c}}
2&3&1 \\
5&6&2 \\
3&4&1
\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}
6&9&3 \\
{15}&{18}&6 \\
9&{12}&3
\end{array}} \right]\]
On multiplying \[{A^2}\] with A we get \[{A^3}\]
\[{A^3} = {A^2}.A = \left[ {\begin{array}{*{20}{c}}
2&3&1 \\
5&6&2 \\
3&4&1
\end{array}} \right]\left[ {\begin{array}{*{20}{c}}
1&1&0 \\
1&2&1 \\
2&1&0
\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}
7&9&3 \\
{15}&{19}&6 \\
9&{12}&4
\end{array}} \right]\]
Therefore \[{A^3} - 3{A^2} = \left[ {\begin{array}{*{20}{c}}
7&9&3 \\
{15}&{19}&6 \\
9&{12}&4
\end{array}} \right] - \left[ {\begin{array}{*{20}{c}}
6&9&3 \\
{15}&{18}&6 \\
9&{12}&3
\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}
1&0&0 \\
0&1&0 \\
0&0&1
\end{array}} \right] = I\]
\[
\\
\Rightarrow {A^3} - 3{A^2} - I = 0 \\
\]
Option B. is the correct answer.
Note: To solve the given problem, one must know to add, subtract and multiply two matrices. One must make sure that the terms are added before giving the resultant value in each position of the resultant matrix during matrix multiplication.
Formula used:
If \[A = {[{a_{ij}}]_{m \times n}}\] and \[B = {[{b_{ij}}]_{n \times p}}\] then we can say that \[A \times B = C\] where the value of C is
\[C = {[{c_{ij}}]_{m \times p}}\]
Here \[{c_{ij}} = \mathop \sum \limits_{j = 1}^m {a_{ij}}{b_{jk}} = {a_{i1}}{b_{1k}} + {a_{i2}}{b_{2k}} + ........ + {a_{im}}{b_{mk}}\]
Complete step by step solution:
We are given that,
\[A = \left[ {\begin{array}{*{20}{c}}
1&1&0 \\
1&2&1 \\
2&1&0
\end{array}} \right]\]
On squaring A, we get \[{A^2}\]
\[{A^2} = A.A = \left[ {\begin{array}{*{20}{c}}
1&1&0 \\
1&2&1 \\
2&1&0
\end{array}} \right]\left[ {\begin{array}{*{20}{c}}
1&1&0 \\
1&2&1 \\
2&1&0
\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}
2&3&1 \\
5&6&2 \\
3&4&1
\end{array}} \right]\]
On multiplying the scalar 3 with \[{A^2}\]we get,
\[3{A^2} = 3\left[ {\begin{array}{*{20}{c}}
2&3&1 \\
5&6&2 \\
3&4&1
\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}
6&9&3 \\
{15}&{18}&6 \\
9&{12}&3
\end{array}} \right]\]
On multiplying \[{A^2}\] with A we get \[{A^3}\]
\[{A^3} = {A^2}.A = \left[ {\begin{array}{*{20}{c}}
2&3&1 \\
5&6&2 \\
3&4&1
\end{array}} \right]\left[ {\begin{array}{*{20}{c}}
1&1&0 \\
1&2&1 \\
2&1&0
\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}
7&9&3 \\
{15}&{19}&6 \\
9&{12}&4
\end{array}} \right]\]
Therefore \[{A^3} - 3{A^2} = \left[ {\begin{array}{*{20}{c}}
7&9&3 \\
{15}&{19}&6 \\
9&{12}&4
\end{array}} \right] - \left[ {\begin{array}{*{20}{c}}
6&9&3 \\
{15}&{18}&6 \\
9&{12}&3
\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}
1&0&0 \\
0&1&0 \\
0&0&1
\end{array}} \right] = I\]
\[
\\
\Rightarrow {A^3} - 3{A^2} - I = 0 \\
\]
Option B. is the correct answer.
Note: To solve the given problem, one must know to add, subtract and multiply two matrices. One must make sure that the terms are added before giving the resultant value in each position of the resultant matrix during matrix multiplication.
Recently Updated Pages
JEE Main 2023 April 6 Shift 1 Question Paper with Answer Key

JEE Main 2023 April 6 Shift 2 Question Paper with Answer Key

JEE Main 2023 (January 31 Evening Shift) Question Paper with Solutions [PDF]

JEE Main 2023 January 30 Shift 2 Question Paper with Answer Key

JEE Main 2023 January 25 Shift 1 Question Paper with Answer Key

JEE Main 2023 January 24 Shift 2 Question Paper with Answer Key

Trending doubts
JEE Main 2026: Session 2 Registration Open, City Intimation Slip, Exam Dates, Syllabus & Eligibility

JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

Understanding the Angle of Deviation in a Prism

Hybridisation in Chemistry – Concept, Types & Applications

How to Convert a Galvanometer into an Ammeter or Voltmeter

Understanding the Electric Field of a Uniformly Charged Ring

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

Derivation of Equation of Trajectory Explained for Students

Understanding Electromagnetic Waves and Their Importance

Understanding How a Current Loop Acts as a Magnetic Dipole

Understanding Average and RMS Value in Electrical Circuits

