
For any vector $a$ , which is the value of ${\left| {a \times i} \right|^2} + {\left| {a \times j} \right|^2} + {\left| {a \times k} \right|^2}$ ?
A. ${\left| a \right|^2}$
B. $2{\left| a \right|^2}$
C. $3{\left| a \right|^2}$
D. $4{\left| a \right|^2}$
Answer
232.8k+ views
Hint: To find the solution to a given problem, the properties of cross-product (vector-product) between two vectors must be known. In this problem, we will first assume any random vector $a$, apply the properties of a cross-product and then compute the modulus of the resulting vector to find the correct solution to the given problem.
Formula used:
The cross product of unit vectors used in this problem are: -
$\widehat i \times \widehat i = \widehat j \times \widehat j = \widehat k \times \widehat k = 0$ and $\widehat i \times \widehat j = - \widehat j \times \widehat i = \widehat k$ , $\widehat j \times \widehat k = - \widehat k \times \widehat j = \widehat i$ & $\widehat k \times \widehat i = - \widehat i \times \widehat k = \widehat j$and the modulus of any vector $a$ is given as:
$\left| {\overrightarrow a } \right| = \left( {\sqrt {{x^2} + {y^2} + {z^2}} } \right)$
Complete step by step solution:
Let us first consider the value of $\overrightarrow a = x\widehat i + y\widehat j + z\widehat k$.
Let, ${\left| {a \times i} \right|^2} + {\left| {a \times j} \right|^2} + {\left| {a \times k} \right|^2}$ $\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,...\,(1)$
Now, let us find out the values of the given expressions one by one in the problem: -
For cross-product with Vector $\widehat i$ ,
$a \times \widehat i = \left( {(x\widehat i + y\widehat j + z\widehat k) \times \widehat i} \right) = \left( {x(\widehat i \times \widehat i) + y(\widehat j \times \widehat i) + z(\widehat k \times \widehat i)} \right) = \left( {0 + y( - \widehat k) + z(\widehat j)} \right) = \left( { - y\widehat k + z\widehat j} \right)$
By taking the modulus and then squaring it, we will get: -
${\left| {a \times \widehat i} \right|^2} = {\left( {\sqrt {{{( - y)}^2} + {z^2}} } \right)^2} = {y^2} + {z^2}$
For cross-product with Vector $\widehat j$ ,
$a \times \widehat j = \left( {(x\widehat i + y\widehat j + z\widehat k) \times \widehat j} \right) = \left( {x(\widehat i \times \widehat j) + y(\widehat j \times \widehat j) + z(\widehat k \times \widehat j)} \right) = \left( {x(\widehat k) + 0 + z( - \widehat i)} \right) = \left( {x\widehat k - z\widehat i} \right)$By taking the modulus and then squaring it, we will get: -
${\left| {a \times \widehat j} \right|^2} = {\left( {\sqrt {{x^2} + {{( - z)}^2}} } \right)^2} = {x^2} + {z^2}$
For cross-product with Vector $\widehat k$ ,
By taking the modulus and then squaring it, we will get: -
$a \times \widehat k = \left( {(x\widehat i + y\widehat j + z\widehat k) \times \widehat k} \right) = \left( {x(\widehat i \times \widehat k) + y(\widehat j \times \widehat k) + z(\widehat k \times \widehat k)} \right) = \left( {x( - \widehat j) + y(\widehat i) + 0} \right) = \left( { - x\widehat j + y\widehat i} \right)$ -
${\left| {a \times \widehat k} \right|^2} = {\left( {\sqrt {{{( - x)}^2} + {y^2}} } \right)^2} = {x^2} + {y^2}$
Now substitute the values in eq. $\left( 1 \right)$ , we get
${\left| {a \times i} \right|^2} + {\left| {a \times j} \right|^2} + {\left| {a \times k} \right|^2} = ({y^2} + {z^2}) + ({x^2} + {z^2}) + ({x^2} + {y^2}) = 2({x^2} + {y^2} + {z^2})$ $\,\,...\,(2)$
Let us find the modulus of the vector $a$and square it, we get
${\left| {\overrightarrow a } \right|^2} = {\left( {\sqrt {{x^2} + {y^2} + {z^2}} } \right)^2} = {x^2} + {y^2} + {z^2}$
Now, on substituting this value in equation $\left( 2 \right)$ , we get
${\left| {a \times i} \right|^2} + {\left| {a \times j} \right|^2} + {\left| {a \times k} \right|^2} = 2({x^2} + {y^2} + {z^2}) = 2{\left| {\overrightarrow a } \right|^2}$
Thus, the final value of the expression given is $2{\left| {\overrightarrow a } \right|^2}$.
Hence, the correct option is: (B) $2{\left| a \right|^2}$
Note: Since the problem is based on Vector Algebra, it is essential to analyze the given conditions carefully on the basis of which the procedure of solving the problem is identified. Also, we can use the natural formula of cross-product by using the determinant method here. Calculations must be performed very carefully and all the signs of the vector must be used in the solution in a proper manner.
Formula used:
The cross product of unit vectors used in this problem are: -
$\widehat i \times \widehat i = \widehat j \times \widehat j = \widehat k \times \widehat k = 0$ and $\widehat i \times \widehat j = - \widehat j \times \widehat i = \widehat k$ , $\widehat j \times \widehat k = - \widehat k \times \widehat j = \widehat i$ & $\widehat k \times \widehat i = - \widehat i \times \widehat k = \widehat j$and the modulus of any vector $a$ is given as:
$\left| {\overrightarrow a } \right| = \left( {\sqrt {{x^2} + {y^2} + {z^2}} } \right)$
Complete step by step solution:
Let us first consider the value of $\overrightarrow a = x\widehat i + y\widehat j + z\widehat k$.
Let, ${\left| {a \times i} \right|^2} + {\left| {a \times j} \right|^2} + {\left| {a \times k} \right|^2}$ $\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,...\,(1)$
Now, let us find out the values of the given expressions one by one in the problem: -
For cross-product with Vector $\widehat i$ ,
$a \times \widehat i = \left( {(x\widehat i + y\widehat j + z\widehat k) \times \widehat i} \right) = \left( {x(\widehat i \times \widehat i) + y(\widehat j \times \widehat i) + z(\widehat k \times \widehat i)} \right) = \left( {0 + y( - \widehat k) + z(\widehat j)} \right) = \left( { - y\widehat k + z\widehat j} \right)$
By taking the modulus and then squaring it, we will get: -
${\left| {a \times \widehat i} \right|^2} = {\left( {\sqrt {{{( - y)}^2} + {z^2}} } \right)^2} = {y^2} + {z^2}$
For cross-product with Vector $\widehat j$ ,
$a \times \widehat j = \left( {(x\widehat i + y\widehat j + z\widehat k) \times \widehat j} \right) = \left( {x(\widehat i \times \widehat j) + y(\widehat j \times \widehat j) + z(\widehat k \times \widehat j)} \right) = \left( {x(\widehat k) + 0 + z( - \widehat i)} \right) = \left( {x\widehat k - z\widehat i} \right)$By taking the modulus and then squaring it, we will get: -
${\left| {a \times \widehat j} \right|^2} = {\left( {\sqrt {{x^2} + {{( - z)}^2}} } \right)^2} = {x^2} + {z^2}$
For cross-product with Vector $\widehat k$ ,
By taking the modulus and then squaring it, we will get: -
$a \times \widehat k = \left( {(x\widehat i + y\widehat j + z\widehat k) \times \widehat k} \right) = \left( {x(\widehat i \times \widehat k) + y(\widehat j \times \widehat k) + z(\widehat k \times \widehat k)} \right) = \left( {x( - \widehat j) + y(\widehat i) + 0} \right) = \left( { - x\widehat j + y\widehat i} \right)$ -
${\left| {a \times \widehat k} \right|^2} = {\left( {\sqrt {{{( - x)}^2} + {y^2}} } \right)^2} = {x^2} + {y^2}$
Now substitute the values in eq. $\left( 1 \right)$ , we get
${\left| {a \times i} \right|^2} + {\left| {a \times j} \right|^2} + {\left| {a \times k} \right|^2} = ({y^2} + {z^2}) + ({x^2} + {z^2}) + ({x^2} + {y^2}) = 2({x^2} + {y^2} + {z^2})$ $\,\,...\,(2)$
Let us find the modulus of the vector $a$and square it, we get
${\left| {\overrightarrow a } \right|^2} = {\left( {\sqrt {{x^2} + {y^2} + {z^2}} } \right)^2} = {x^2} + {y^2} + {z^2}$
Now, on substituting this value in equation $\left( 2 \right)$ , we get
${\left| {a \times i} \right|^2} + {\left| {a \times j} \right|^2} + {\left| {a \times k} \right|^2} = 2({x^2} + {y^2} + {z^2}) = 2{\left| {\overrightarrow a } \right|^2}$
Thus, the final value of the expression given is $2{\left| {\overrightarrow a } \right|^2}$.
Hence, the correct option is: (B) $2{\left| a \right|^2}$
Note: Since the problem is based on Vector Algebra, it is essential to analyze the given conditions carefully on the basis of which the procedure of solving the problem is identified. Also, we can use the natural formula of cross-product by using the determinant method here. Calculations must be performed very carefully and all the signs of the vector must be used in the solution in a proper manner.
Recently Updated Pages
The area of an expanding rectangle is increasing at class 12 maths JEE_Main

If y xxx cdots infty then find dfracdydx A yxy 1 B class 12 maths JEE_Main

Area vs Volume: Key Differences Explained for Students

Mutually Exclusive vs Independent Events: Key Differences Explained

Geometry of Complex Numbers Explained

JEE General Topics in Chemistry Important Concepts and Tips

Trending doubts
JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

JEE Main Marking Scheme 2026- Paper-Wise Marks Distribution and Negative Marking Details

Understanding Electromagnetic Waves and Their Importance

Inductive Effect and Its Role in Acidic Strength

Degree of Dissociation: Meaning, Formula, Calculation & Uses

Understanding Average and RMS Value in Electrical Circuits

Other Pages
JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

Ideal and Non-Ideal Solutions Explained for Class 12 Chemistry

Understanding Collisions: Types and Examples for Students

JEE Main Participating Colleges 2026 - A Complete List of Top Colleges

JEE Advanced 2026 Revision Notes for Practical Organic Chemistry

Chemistry Question Papers for JEE Main, NEET & Boards (PDFs)

