
Find the value of the given integral
\[\int {{a^x}{e^x}dx} \]
Answer
216.6k+ views
Hint:- Use the integral by-parts.
Let the value of the given integral be I.
Then, I = \[\int {{a^x}{e^x}dx} \]. (1)
As, we know that if u and v are two functions of $x$ , then the integral of the product of
these two functions will be:
\[ \Rightarrow \int {uvdx = u\int {vdx - \int {\left[ {\dfrac{{du}}{{dx}}\int {vdx} } \right]dx} } } \] (2)
In applying the above equation, the selection of the first function (u) and
Second function (v) should be done depending on which function can be integrated easily.
Normally, we use the preference order for the first function i.e.
ILATE RULE (Inverse, Logarithmic, Algebraic, Trigonometric, Exponent) which states that the
Inverse function should be assumed as the first function while performing the integration.
Hence the functions are assumed from left to right depending on the type of functions involved.
Then by using the ILATE Rule. We can easily solve the above problem.
According to ILATE Rule,
\[ \Rightarrow u = {a^x}\]
\[ \Rightarrow v = {e^x}\]
So, now putting value of u and v in equation 2 we get,
\[ \Rightarrow I = \int {{a^x}{e^x}dx = {a^x}\int {{e^x}dx - \int {\left[ {\dfrac{{d\left( {{a^x}} \right)}}{{dx}}\int {{e^x}dx} } \right]dx} } } \] (3)
As, we know that, \[\int {{e^x}dx = {e^x}} \]and \[\dfrac{{d\left( {{a^x}} \right)}}{{dx}} = {a^x}.\ln a\]
So, now solving equation 3 we get,
\[ \Rightarrow I = {a^x}.{e^x} - \ln a\int {{a^x}.{e^x}dx} \]
Now, putting the value of \[\int {{a^x}{e^x}dx} \] from equation 1 to above equation. We get,
\[ \Rightarrow I = {a^x}.{e^x} - \ln a(I)\]
Solving above equation we get,
\[
\Rightarrow I\left( {1 + \ln a} \right) = {a^x}.{e^x} \\
\Rightarrow I = \dfrac{{{a^x}.{e^x}}}{{\left( {1 + \ln a} \right)}} \\
\]
Hence the value of given integral is \[\int {{a^x}{e^x}dx} = \dfrac{{{a^x}.{e^x}}}{{\left( {1 + \ln a} \right)}}\].
NOTE:- Whenever we came up with this type of problem then easiest and efficient way to
Solving the problem is using by-parts. And for the selection of the first function we can use ILATE
RULE.Then we can find the value of the given integral using parts. But remember the basic
differentiation and integration formulas.
Let the value of the given integral be I.
Then, I = \[\int {{a^x}{e^x}dx} \]. (1)
As, we know that if u and v are two functions of $x$ , then the integral of the product of
these two functions will be:
\[ \Rightarrow \int {uvdx = u\int {vdx - \int {\left[ {\dfrac{{du}}{{dx}}\int {vdx} } \right]dx} } } \] (2)
In applying the above equation, the selection of the first function (u) and
Second function (v) should be done depending on which function can be integrated easily.
Normally, we use the preference order for the first function i.e.
ILATE RULE (Inverse, Logarithmic, Algebraic, Trigonometric, Exponent) which states that the
Inverse function should be assumed as the first function while performing the integration.
Hence the functions are assumed from left to right depending on the type of functions involved.
Then by using the ILATE Rule. We can easily solve the above problem.
According to ILATE Rule,
\[ \Rightarrow u = {a^x}\]
\[ \Rightarrow v = {e^x}\]
So, now putting value of u and v in equation 2 we get,
\[ \Rightarrow I = \int {{a^x}{e^x}dx = {a^x}\int {{e^x}dx - \int {\left[ {\dfrac{{d\left( {{a^x}} \right)}}{{dx}}\int {{e^x}dx} } \right]dx} } } \] (3)
As, we know that, \[\int {{e^x}dx = {e^x}} \]and \[\dfrac{{d\left( {{a^x}} \right)}}{{dx}} = {a^x}.\ln a\]
So, now solving equation 3 we get,
\[ \Rightarrow I = {a^x}.{e^x} - \ln a\int {{a^x}.{e^x}dx} \]
Now, putting the value of \[\int {{a^x}{e^x}dx} \] from equation 1 to above equation. We get,
\[ \Rightarrow I = {a^x}.{e^x} - \ln a(I)\]
Solving above equation we get,
\[
\Rightarrow I\left( {1 + \ln a} \right) = {a^x}.{e^x} \\
\Rightarrow I = \dfrac{{{a^x}.{e^x}}}{{\left( {1 + \ln a} \right)}} \\
\]
Hence the value of given integral is \[\int {{a^x}{e^x}dx} = \dfrac{{{a^x}.{e^x}}}{{\left( {1 + \ln a} \right)}}\].
NOTE:- Whenever we came up with this type of problem then easiest and efficient way to
Solving the problem is using by-parts. And for the selection of the first function we can use ILATE
RULE.Then we can find the value of the given integral using parts. But remember the basic
differentiation and integration formulas.
Recently Updated Pages
JEE Atomic Structure and Chemical Bonding important Concepts and Tips

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

Electricity and Magnetism Explained: Key Concepts & Applications

Chemical Properties of Hydrogen - Important Concepts for JEE Exam Preparation

JEE Energetics Important Concepts and Tips for Exam Preparation

JEE Isolation, Preparation and Properties of Non-metals Important Concepts and Tips for Exam Preparation

Trending doubts
JEE Main 2026: Application Form Open, Exam Dates, Syllabus, Eligibility & Question Papers

Derivation of Equation of Trajectory Explained for Students

Hybridisation in Chemistry – Concept, Types & Applications

Understanding the Angle of Deviation in a Prism

Understanding Collisions: Types and Examples for Students

How to Convert a Galvanometer into an Ammeter or Voltmeter

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Understanding Atomic Structure for Beginners

Ideal and Non-Ideal Solutions Explained for Class 12 Chemistry

Degree of Dissociation: Meaning, Formula, Calculation & Uses

Understanding Electromagnetic Waves and Their Importance

Understanding the Electric Field of a Uniformly Charged Ring

