
Find the value of \[\sin \left( {\dfrac{\pi }{{10}}} \right)\sin \left( {\dfrac{{3\pi }}{{10}}} \right)\]
A. \[\dfrac{1}{2}\]
B. \[ - \dfrac{1}{2}\]
C. \[\dfrac{1}{4}\]
D. \[1\]
Answer
218.1k+ views
Hint:
We need to convert the given unknown sine angles into known sine and cosine angles so as to substitute values into the given equation and calculate the required answer.
Formula Used:
\[\sin {18^\circ } = \dfrac{{\sqrt 5 - 1}}{4},\cos {36^\circ } = \dfrac{{\sqrt 5 + 1}}{4}\]
\[\sin \left( {{{90}^\circ } - \theta } \right) = \cos \theta \]
Complete step-by-step answer:
Since we know the values of \[\sin {18^\circ }\] and \[\cos {36^\circ }\], we will try to convert the given equation\[\sin \left( {\dfrac{\pi }{{10}}} \right)\sin \left( {\dfrac{{3\pi }}{{10}}} \right)\] into a form where we can substitute the known ones
Given,
\[\sin \left( {\dfrac{\pi }{{10}}} \right)\sin \left( {\dfrac{{3\pi }}{{10}}} \right)\]
Converting radian values into degree
\[ = \sin \left( {\dfrac{\pi }{{10}} \times \dfrac{{{{180}^ \circ }}}{\pi }} \right)\sin \left( {\dfrac{{3\pi }}{{10}} \times \dfrac{{{{180}^ \circ }}}{\pi }} \right)\]
\[ = \sin {18^\circ }\sin {54^\circ }\]
\[ = \sin {18^\circ }\sin \left( {{{90}^\circ } - {{36}^\circ }} \right)\]
Substituting using formula \[\sin \left( {{{90}^\circ } - \theta } \right) = \cos \theta \], we get
\[ = \sin {18^\circ }\cos {36^\circ }\]
Now putting the known values \[\sin {18^\circ } = \dfrac{{\sqrt 5 - 1}}{4} and \cos {36^\circ } = \dfrac{{\sqrt 5 + 1}}{4}\] , we get
\[ = \dfrac{{\sqrt 5 - 1}}{4} \cdot \dfrac{{\sqrt 5 + 1}}{4}\]
Applying the algebraic identity \[{a^2} - {b^2} = \left( {a - b} \right)\left( {a + b} \right)\]
\[ = \dfrac{{5 - 1}}{{16}}\]
\[ = \dfrac{4}{{16}}\]
\[ = \dfrac{1}{4}\]
Option C is the correct answer
Additional information:
We can convert the radian to degree by multiplying \[\dfrac{{{{180}^ \circ }}}{\pi }\].
For example: \[\dfrac{\pi }{3} = \dfrac{\pi }{3} \times \dfrac{{{{180}^ \circ }}}{\pi } = {60^ \circ }\]
To convert degree to radian we multiply \[\dfrac{\pi }{{{{180}^ \circ }}}\].
For example: \[{60^ \circ } = {60^ \circ } \times \dfrac{\theta }{{{{180}^ \circ }}} = \dfrac{\pi }{3}\]
Note:
Students often confused with the formula \[\sin \left( {{{90}^\circ } + \theta } \right) = \cos \theta \] and \[\sin \left( {{{90}^\circ } + \theta } \right) = - \cos \theta \]. The correct formula is \[\sin \left( {{{90}^\circ } + \theta } \right) = \cos \theta \].
We need to convert the given unknown sine angles into known sine and cosine angles so as to substitute values into the given equation and calculate the required answer.
Formula Used:
\[\sin {18^\circ } = \dfrac{{\sqrt 5 - 1}}{4},\cos {36^\circ } = \dfrac{{\sqrt 5 + 1}}{4}\]
\[\sin \left( {{{90}^\circ } - \theta } \right) = \cos \theta \]
Complete step-by-step answer:
Since we know the values of \[\sin {18^\circ }\] and \[\cos {36^\circ }\], we will try to convert the given equation\[\sin \left( {\dfrac{\pi }{{10}}} \right)\sin \left( {\dfrac{{3\pi }}{{10}}} \right)\] into a form where we can substitute the known ones
Given,
\[\sin \left( {\dfrac{\pi }{{10}}} \right)\sin \left( {\dfrac{{3\pi }}{{10}}} \right)\]
Converting radian values into degree
\[ = \sin \left( {\dfrac{\pi }{{10}} \times \dfrac{{{{180}^ \circ }}}{\pi }} \right)\sin \left( {\dfrac{{3\pi }}{{10}} \times \dfrac{{{{180}^ \circ }}}{\pi }} \right)\]
\[ = \sin {18^\circ }\sin {54^\circ }\]
\[ = \sin {18^\circ }\sin \left( {{{90}^\circ } - {{36}^\circ }} \right)\]
Substituting using formula \[\sin \left( {{{90}^\circ } - \theta } \right) = \cos \theta \], we get
\[ = \sin {18^\circ }\cos {36^\circ }\]
Now putting the known values \[\sin {18^\circ } = \dfrac{{\sqrt 5 - 1}}{4} and \cos {36^\circ } = \dfrac{{\sqrt 5 + 1}}{4}\] , we get
\[ = \dfrac{{\sqrt 5 - 1}}{4} \cdot \dfrac{{\sqrt 5 + 1}}{4}\]
Applying the algebraic identity \[{a^2} - {b^2} = \left( {a - b} \right)\left( {a + b} \right)\]
\[ = \dfrac{{5 - 1}}{{16}}\]
\[ = \dfrac{4}{{16}}\]
\[ = \dfrac{1}{4}\]
Option C is the correct answer
Additional information:
We can convert the radian to degree by multiplying \[\dfrac{{{{180}^ \circ }}}{\pi }\].
For example: \[\dfrac{\pi }{3} = \dfrac{\pi }{3} \times \dfrac{{{{180}^ \circ }}}{\pi } = {60^ \circ }\]
To convert degree to radian we multiply \[\dfrac{\pi }{{{{180}^ \circ }}}\].
For example: \[{60^ \circ } = {60^ \circ } \times \dfrac{\theta }{{{{180}^ \circ }}} = \dfrac{\pi }{3}\]
Note:
Students often confused with the formula \[\sin \left( {{{90}^\circ } + \theta } \right) = \cos \theta \] and \[\sin \left( {{{90}^\circ } + \theta } \right) = - \cos \theta \]. The correct formula is \[\sin \left( {{{90}^\circ } + \theta } \right) = \cos \theta \].
Recently Updated Pages
Chemical Properties of Hydrogen - Important Concepts for JEE Exam Preparation

JEE General Topics in Chemistry Important Concepts and Tips

JEE Atomic Structure and Chemical Bonding important Concepts and Tips

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

JEE Extractive Metallurgy Important Concepts and Tips for Exam Preparation

Algebra Made Easy: Step-by-Step Guide for Students

Trending doubts
JEE Main 2026: Application Form Open, Exam Dates, Syllabus, Eligibility & Question Papers

Derivation of Equation of Trajectory Explained for Students

Hybridisation in Chemistry – Concept, Types & Applications

Understanding the Angle of Deviation in a Prism

Understanding Collisions: Types and Examples for Students

Understanding Atomic Structure for Beginners

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

How to Convert a Galvanometer into an Ammeter or Voltmeter

Understanding Centrifugal Force in Physics

Ideal and Non-Ideal Solutions Explained for Class 12 Chemistry

Degree of Dissociation: Meaning, Formula, Calculation & Uses

Understanding Electromagnetic Waves and Their Importance

