
Find the value of Rydberg’s constant if the energy of the electron in the second orbit in the hydrogen atom is -3.4eV.
Answer
220.2k+ views
Rydberg constant describes the wavelengths or frequencies of light in various series of related spectral lines, mainly those emitted by hydrogen atoms in the Balmer series.
Complete step-by-step answer:
We know,
The wavelength of an electron is represented by $\text{ }\!\!\lambda\!\!\text{ }$
${{\text{ }\!\!\eta\!\!\text{ }}_{\text{1}}}$ is the orbit number which is 2 in this case
${{\text{ }\!\!\eta\!\!\text{ }}_{\text{2}}}$ is \[\infty \] because the destination orbit number is undefined
\[\dfrac{\text{1}}{\text{ }\!\!\lambda\!\!\text{ }}\text{=R}\left( \dfrac{\text{1}}{{{\text{ }\!\!\eta\!\!\text{ }}_{\text{1}}}^{\text{2}}}-\dfrac{\text{1}}{{{\text{ }\!\!\eta\!\!\text{ }}_{\text{2}}}^{\text{2}}} \right)\]
Where R is Rydberg constant.
\[\Rightarrow \dfrac{\text{hc}}{\text{ }\!\!\lambda\!\!\text{ }}\text{=hcR}\left( \dfrac{\text{1}}{{{\text{ }\!\!\eta\!\!\text{ }}_{\text{1}}}^{\text{2}}}-\dfrac{\text{1}}{{{\text{ }\!\!\eta\!\!\text{ }}_{\text{2}}}^{\text{2}}} \right)\]
\[\Rightarrow \Delta \text{E=hcR}\left( \dfrac{\text{1}}{{{\text{ }\!\!\eta\!\!\text{ }}_{\text{1}}}^{\text{2}}}-\dfrac{\text{1}}{{{\text{ }\!\!\eta\!\!\text{ }}_{\text{2}}}^{\text{2}}} \right)\]
Given,
$\text{E = }-\text{3}\text{.4eV}$
So,
$\Delta \text{E = 0}-(-\text{3}\text{.4eV})$
$=\text{ 3}\text{.4eV = 3}\text{.4}\times \text{1}\text{.6}\times \text{1}{{\text{0}}^{-19}}$
$=\text{ 5}\text{.44}\times \text{1}{{\text{0}}^{-19}}\text{ J}$
Where,
$\text{h = 6}\text{.63}\times \text{1}{{\text{0}}^{-34}}\text{ }{{\text{m}}^{2}}\text{kg/s}$
$\text{c = 3}\times \text{1}{{\text{0}}^{8}}\text{ m/s}$
So,
$5.44\times {{10}^{-19}}\text{ = }\dfrac{\text{R}\times \text{6}\text{.63}\times \text{1}{{\text{0}}^{-34}}\times 3\times {{10}^{8}}}{4}$
$\Rightarrow \text{R = 1}\text{.09}\times \text{1}{{\text{0}}^{6}}\text{ }{{\text{m}}^{-1}}$
Therefore, the value of Rydberg’s constant is $\text{1}\text{.09}\times \text{1}{{\text{0}}^{6}}\text{ }{{\text{m}}^{-1}}$ if the energy of electron in the second orbit of hydrogen atom is -3.4eV.
Note: We should have knowledge about the Rydberg’s constant.
1) In spectroscopy, the Rydberg constant, symbol for heavy atoms or for hydrogen, named after the Swedish physicist Johannes Rydberg, is a physical constant relating to the electromagnetic spectrum of an atom.
2) When used in this form in the mathematical description of a series of spectral lines, the result is the number of waves per unit length, of the week numbers. Multiplication by the speed of light yields the frequencies of the spectral lines.
3) Kinetic and potential energy of atoms results from the motion of electrons. When the electrons are excited they move to a higher energy orbital farther away from the atom. The further the orbital from the nucleus, the higher the potential energy of the electron at the energy level.
Complete step-by-step answer:
We know,
The wavelength of an electron is represented by $\text{ }\!\!\lambda\!\!\text{ }$
${{\text{ }\!\!\eta\!\!\text{ }}_{\text{1}}}$ is the orbit number which is 2 in this case
${{\text{ }\!\!\eta\!\!\text{ }}_{\text{2}}}$ is \[\infty \] because the destination orbit number is undefined
\[\dfrac{\text{1}}{\text{ }\!\!\lambda\!\!\text{ }}\text{=R}\left( \dfrac{\text{1}}{{{\text{ }\!\!\eta\!\!\text{ }}_{\text{1}}}^{\text{2}}}-\dfrac{\text{1}}{{{\text{ }\!\!\eta\!\!\text{ }}_{\text{2}}}^{\text{2}}} \right)\]
Where R is Rydberg constant.
\[\Rightarrow \dfrac{\text{hc}}{\text{ }\!\!\lambda\!\!\text{ }}\text{=hcR}\left( \dfrac{\text{1}}{{{\text{ }\!\!\eta\!\!\text{ }}_{\text{1}}}^{\text{2}}}-\dfrac{\text{1}}{{{\text{ }\!\!\eta\!\!\text{ }}_{\text{2}}}^{\text{2}}} \right)\]
\[\Rightarrow \Delta \text{E=hcR}\left( \dfrac{\text{1}}{{{\text{ }\!\!\eta\!\!\text{ }}_{\text{1}}}^{\text{2}}}-\dfrac{\text{1}}{{{\text{ }\!\!\eta\!\!\text{ }}_{\text{2}}}^{\text{2}}} \right)\]
Given,
$\text{E = }-\text{3}\text{.4eV}$
So,
$\Delta \text{E = 0}-(-\text{3}\text{.4eV})$
$=\text{ 3}\text{.4eV = 3}\text{.4}\times \text{1}\text{.6}\times \text{1}{{\text{0}}^{-19}}$
$=\text{ 5}\text{.44}\times \text{1}{{\text{0}}^{-19}}\text{ J}$
Where,
$\text{h = 6}\text{.63}\times \text{1}{{\text{0}}^{-34}}\text{ }{{\text{m}}^{2}}\text{kg/s}$
$\text{c = 3}\times \text{1}{{\text{0}}^{8}}\text{ m/s}$
So,
$5.44\times {{10}^{-19}}\text{ = }\dfrac{\text{R}\times \text{6}\text{.63}\times \text{1}{{\text{0}}^{-34}}\times 3\times {{10}^{8}}}{4}$
$\Rightarrow \text{R = 1}\text{.09}\times \text{1}{{\text{0}}^{6}}\text{ }{{\text{m}}^{-1}}$
Therefore, the value of Rydberg’s constant is $\text{1}\text{.09}\times \text{1}{{\text{0}}^{6}}\text{ }{{\text{m}}^{-1}}$ if the energy of electron in the second orbit of hydrogen atom is -3.4eV.
Note: We should have knowledge about the Rydberg’s constant.
1) In spectroscopy, the Rydberg constant, symbol for heavy atoms or for hydrogen, named after the Swedish physicist Johannes Rydberg, is a physical constant relating to the electromagnetic spectrum of an atom.
2) When used in this form in the mathematical description of a series of spectral lines, the result is the number of waves per unit length, of the week numbers. Multiplication by the speed of light yields the frequencies of the spectral lines.
3) Kinetic and potential energy of atoms results from the motion of electrons. When the electrons are excited they move to a higher energy orbital farther away from the atom. The further the orbital from the nucleus, the higher the potential energy of the electron at the energy level.
Recently Updated Pages
Electricity and Magnetism Explained: Key Concepts & Applications

JEE Energetics Important Concepts and Tips for Exam Preparation

JEE Isolation, Preparation and Properties of Non-metals Important Concepts and Tips for Exam Preparation

JEE Main 2021 July 25 Shift 1 Question Paper with Answer Key

JEE Main 2021 July 22 Shift 2 Question Paper with Answer Key

States of Matter Chapter For JEE Main Chemistry

Trending doubts
JEE Main 2026: Application Form Open, Exam Dates, Syllabus, Eligibility & Question Papers

Derivation of Equation of Trajectory Explained for Students

Hybridisation in Chemistry – Concept, Types & Applications

Understanding the Angle of Deviation in a Prism

How to Convert a Galvanometer into an Ammeter or Voltmeter

Understanding Centrifugal Force in Physics

Other Pages
NCERT Solutions For Class 11 Chemistry Chapter 7 Redox Reaction

JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Hydrocarbons Class 11 Chemistry Chapter 9 CBSE Notes - 2025-26

Thermodynamics Class 11 Chemistry Chapter 5 CBSE Notes - 2025-26

NCERT Solutions ForClass 11 Chemistry Chapter Chapter 5 Thermodynamics

Equilibrium Class 11 Chemistry Chapter 6 CBSE Notes - 2025-26

