
Find the value of \[n\] for which \[{}^{n - 1}{C_4} - {}^{n - 1}{C_3} - \dfrac{5}{4} \times {}^{n - 2}{P_2} < 0\] , where \[n \in N\].
A. \[\left\{ {5,6,7,8,9,10} \right\}\]
B. \[\left\{ {1,2,3,4,5,6,7,8,9,10} \right\}\]
C. \[\left\{ {1,4,5,6,7,8,9,10} \right\}\]
D. \[\left( { - \infty ,2} \right) \cup \left( {3,11} \right)\]
Answer
233.1k+ views
Hint: Here, one inequality equation is given. First, using the formulas of permutation and combination simplify the inequality equation. After that, solve the inequality equation by applying basic mathematical operations. In the end, check the values of \[n\] with the inequality equations and get the required answer.
Formula Used: Permutation Formula: \[{}^n{P_r} = \dfrac{{n!}}{{\left( {n - r} \right)!}}\]
Combination Formula: \[{}^n{C_r} = \dfrac{{n!}}{{r!\left( {n - r} \right)!}}\]
Complete step by step solution: The given inequality equation is \[{}^{n - 1}{C_4} - {}^{n - 1}{C_3} - \dfrac{5}{4} \times {}^{n - 2}{P_2} < 0\].
Let’s simplify the inequality equation by applying the permutation and combination formulas.
We get,
\[\dfrac{{\left( {n - 1} \right)!}}{{4!\left( {n - 5} \right)!}} - \dfrac{{\left( {n - 1} \right)!}}{{3!\left( {n - 4} \right)!}} - \dfrac{5}{4} \times \dfrac{{\left( {n - 2} \right)!}}{{\left( {n - 4} \right)!}} < 0\]
Simplify the numerator and denominator by applying the factorial.
\[\dfrac{{\left( {n - 1} \right)\left( {n - 2} \right)\left( {n - 3} \right)\left( {n - 4} \right)\left( {n - 5} \right)!}}{{4!\left( {n - 5} \right)!}} - \dfrac{{\left( {n - 1} \right)\left( {n - 2} \right)\left( {n - 3} \right)\left( {n - 4} \right)!}}{{3!\left( {n - 4} \right)!}} - \dfrac{5}{4} \times \dfrac{{\left( {n - 2} \right)\left( {n - 3} \right)\left( {n - 4} \right)!}}{{\left( {n - 4} \right)!}} < 0\]
Cancel out the common terms from the numerator and the denominator.
\[\dfrac{{\left( {n - 1} \right)\left( {n - 2} \right)\left( {n - 3} \right)\left( {n - 4} \right)}}{{4!}} - \dfrac{{\left( {n - 1} \right)\left( {n - 2} \right)\left( {n - 3} \right)}}{{3!}} - \dfrac{5}{4}\left( {n - 2} \right)\left( {n - 3} \right) < 0\]
Multiply both sides by \[4!\].
\[\left( {n - 1} \right)\left( {n - 2} \right)\left( {n - 3} \right)\left( {n - 4} \right) - 4\left( {n - 1} \right)\left( {n - 2} \right)\left( {n - 3} \right) - 30\left( {n - 2} \right)\left( {n - 3} \right) < 0\]
\[ \Rightarrow \left( {n - 2} \right)\left( {n - 3} \right)\left[ {\left( {n - 1} \right)\left( {n - 4} \right) - 4\left( {n - 1} \right) - 30} \right] < 0\]
\[ \Rightarrow \left( {n - 2} \right)\left( {n - 3} \right)\left[ {{n^2} - 5n + 4 - 4n + 4 - 30} \right] < 0\]
\[ \Rightarrow \left( {n - 2} \right)\left( {n - 3} \right)\left[ {{n^2} - 9n - 22} \right] < 0\]
\[ \Rightarrow \left( {n - 2} \right)\left( {n - 3} \right)\left( {n + 2} \right)\left( {n - 11} \right) < 0\]
Solving the above inequality, we get
\[n < 2\] , \[n < 3\], \[n < - 2\], and \[n < 11\]
\[ \Rightarrow - 2 < n < 2\] or \[3 < n < 11\]
\[ \Rightarrow \left( { - \infty ,2} \right) \cup \left( {3,11} \right)\]
\[ \Rightarrow \left( {0,2} \right) \cup \left( {3,11} \right)\]
But it is given that \[n \in N\]
So, \[n = 1,4,5,6,7,8,9,10\] \[.....\left( 1 \right)\]
Also, from the given inequality equation, we get
\[n - 1 \ge 4\], \[n - 1 \ge 3\], and \[n - 2 \ge 2\]
\[ \Rightarrow n \ge 5\], \[n \ge 4\], and \[n \ge 4\]
So, \[n \ge 5\] \[.....\left( 2 \right)\]
From the equations \[\left( 1 \right)\] and \[\left( 2 \right)\], we get
\[n = 5,6,7,8,9,10\]
Therefore, the values of \[n\] are \[\left\{ {5,6,7,8,9,10} \right\}\].
Option ‘A’ is correct
Note: Students directly solve the factorial equations without simplifying or cancelling it.
Factorial of a number is a product of all whole numbers less than that number up to 1.
It is defined as: \[n! = n\left( {n - 1} \right)\left( {n - 2} \right)....3 \times 2 \times 1\]
Formula Used: Permutation Formula: \[{}^n{P_r} = \dfrac{{n!}}{{\left( {n - r} \right)!}}\]
Combination Formula: \[{}^n{C_r} = \dfrac{{n!}}{{r!\left( {n - r} \right)!}}\]
Complete step by step solution: The given inequality equation is \[{}^{n - 1}{C_4} - {}^{n - 1}{C_3} - \dfrac{5}{4} \times {}^{n - 2}{P_2} < 0\].
Let’s simplify the inequality equation by applying the permutation and combination formulas.
We get,
\[\dfrac{{\left( {n - 1} \right)!}}{{4!\left( {n - 5} \right)!}} - \dfrac{{\left( {n - 1} \right)!}}{{3!\left( {n - 4} \right)!}} - \dfrac{5}{4} \times \dfrac{{\left( {n - 2} \right)!}}{{\left( {n - 4} \right)!}} < 0\]
Simplify the numerator and denominator by applying the factorial.
\[\dfrac{{\left( {n - 1} \right)\left( {n - 2} \right)\left( {n - 3} \right)\left( {n - 4} \right)\left( {n - 5} \right)!}}{{4!\left( {n - 5} \right)!}} - \dfrac{{\left( {n - 1} \right)\left( {n - 2} \right)\left( {n - 3} \right)\left( {n - 4} \right)!}}{{3!\left( {n - 4} \right)!}} - \dfrac{5}{4} \times \dfrac{{\left( {n - 2} \right)\left( {n - 3} \right)\left( {n - 4} \right)!}}{{\left( {n - 4} \right)!}} < 0\]
Cancel out the common terms from the numerator and the denominator.
\[\dfrac{{\left( {n - 1} \right)\left( {n - 2} \right)\left( {n - 3} \right)\left( {n - 4} \right)}}{{4!}} - \dfrac{{\left( {n - 1} \right)\left( {n - 2} \right)\left( {n - 3} \right)}}{{3!}} - \dfrac{5}{4}\left( {n - 2} \right)\left( {n - 3} \right) < 0\]
Multiply both sides by \[4!\].
\[\left( {n - 1} \right)\left( {n - 2} \right)\left( {n - 3} \right)\left( {n - 4} \right) - 4\left( {n - 1} \right)\left( {n - 2} \right)\left( {n - 3} \right) - 30\left( {n - 2} \right)\left( {n - 3} \right) < 0\]
\[ \Rightarrow \left( {n - 2} \right)\left( {n - 3} \right)\left[ {\left( {n - 1} \right)\left( {n - 4} \right) - 4\left( {n - 1} \right) - 30} \right] < 0\]
\[ \Rightarrow \left( {n - 2} \right)\left( {n - 3} \right)\left[ {{n^2} - 5n + 4 - 4n + 4 - 30} \right] < 0\]
\[ \Rightarrow \left( {n - 2} \right)\left( {n - 3} \right)\left[ {{n^2} - 9n - 22} \right] < 0\]
\[ \Rightarrow \left( {n - 2} \right)\left( {n - 3} \right)\left( {n + 2} \right)\left( {n - 11} \right) < 0\]
Solving the above inequality, we get
\[n < 2\] , \[n < 3\], \[n < - 2\], and \[n < 11\]
\[ \Rightarrow - 2 < n < 2\] or \[3 < n < 11\]
\[ \Rightarrow \left( { - \infty ,2} \right) \cup \left( {3,11} \right)\]
\[ \Rightarrow \left( {0,2} \right) \cup \left( {3,11} \right)\]
But it is given that \[n \in N\]
So, \[n = 1,4,5,6,7,8,9,10\] \[.....\left( 1 \right)\]
Also, from the given inequality equation, we get
\[n - 1 \ge 4\], \[n - 1 \ge 3\], and \[n - 2 \ge 2\]
\[ \Rightarrow n \ge 5\], \[n \ge 4\], and \[n \ge 4\]
So, \[n \ge 5\] \[.....\left( 2 \right)\]
From the equations \[\left( 1 \right)\] and \[\left( 2 \right)\], we get
\[n = 5,6,7,8,9,10\]
Therefore, the values of \[n\] are \[\left\{ {5,6,7,8,9,10} \right\}\].
Option ‘A’ is correct
Note: Students directly solve the factorial equations without simplifying or cancelling it.
Factorial of a number is a product of all whole numbers less than that number up to 1.
It is defined as: \[n! = n\left( {n - 1} \right)\left( {n - 2} \right)....3 \times 2 \times 1\]
Recently Updated Pages
JEE Main 2023 April 6 Shift 1 Question Paper with Answer Key

JEE Main 2023 April 6 Shift 2 Question Paper with Answer Key

JEE Main 2023 (January 31 Evening Shift) Question Paper with Solutions [PDF]

JEE Main 2023 January 30 Shift 2 Question Paper with Answer Key

JEE Main 2023 January 25 Shift 1 Question Paper with Answer Key

JEE Main 2023 January 24 Shift 2 Question Paper with Answer Key

Trending doubts
JEE Main 2026: Session 2 Registration Open, City Intimation Slip, Exam Dates, Syllabus & Eligibility

JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

Understanding the Angle of Deviation in a Prism

Hybridisation in Chemistry – Concept, Types & Applications

How to Convert a Galvanometer into an Ammeter or Voltmeter

Understanding the Electric Field of a Uniformly Charged Ring

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

NCERT Solutions For Class 11 Maths Chapter 12 Limits and Derivatives (2025-26)

NCERT Solutions For Class 11 Maths Chapter 10 Conic Sections (2025-26)

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

Derivation of Equation of Trajectory Explained for Students

Understanding Electromagnetic Waves and Their Importance

