
Find the value of \[n\] for which \[{}^{n - 1}{C_4} - {}^{n - 1}{C_3} - \dfrac{5}{4} \times {}^{n - 2}{P_2} < 0\] , where \[n \in N\].
A. \[\left\{ {5,6,7,8,9,10} \right\}\]
B. \[\left\{ {1,2,3,4,5,6,7,8,9,10} \right\}\]
C. \[\left\{ {1,4,5,6,7,8,9,10} \right\}\]
D. \[\left( { - \infty ,2} \right) \cup \left( {3,11} \right)\]
Answer
162k+ views
Hint: Here, one inequality equation is given. First, using the formulas of permutation and combination simplify the inequality equation. After that, solve the inequality equation by applying basic mathematical operations. In the end, check the values of \[n\] with the inequality equations and get the required answer.
Formula Used: Permutation Formula: \[{}^n{P_r} = \dfrac{{n!}}{{\left( {n - r} \right)!}}\]
Combination Formula: \[{}^n{C_r} = \dfrac{{n!}}{{r!\left( {n - r} \right)!}}\]
Complete step by step solution: The given inequality equation is \[{}^{n - 1}{C_4} - {}^{n - 1}{C_3} - \dfrac{5}{4} \times {}^{n - 2}{P_2} < 0\].
Let’s simplify the inequality equation by applying the permutation and combination formulas.
We get,
\[\dfrac{{\left( {n - 1} \right)!}}{{4!\left( {n - 5} \right)!}} - \dfrac{{\left( {n - 1} \right)!}}{{3!\left( {n - 4} \right)!}} - \dfrac{5}{4} \times \dfrac{{\left( {n - 2} \right)!}}{{\left( {n - 4} \right)!}} < 0\]
Simplify the numerator and denominator by applying the factorial.
\[\dfrac{{\left( {n - 1} \right)\left( {n - 2} \right)\left( {n - 3} \right)\left( {n - 4} \right)\left( {n - 5} \right)!}}{{4!\left( {n - 5} \right)!}} - \dfrac{{\left( {n - 1} \right)\left( {n - 2} \right)\left( {n - 3} \right)\left( {n - 4} \right)!}}{{3!\left( {n - 4} \right)!}} - \dfrac{5}{4} \times \dfrac{{\left( {n - 2} \right)\left( {n - 3} \right)\left( {n - 4} \right)!}}{{\left( {n - 4} \right)!}} < 0\]
Cancel out the common terms from the numerator and the denominator.
\[\dfrac{{\left( {n - 1} \right)\left( {n - 2} \right)\left( {n - 3} \right)\left( {n - 4} \right)}}{{4!}} - \dfrac{{\left( {n - 1} \right)\left( {n - 2} \right)\left( {n - 3} \right)}}{{3!}} - \dfrac{5}{4}\left( {n - 2} \right)\left( {n - 3} \right) < 0\]
Multiply both sides by \[4!\].
\[\left( {n - 1} \right)\left( {n - 2} \right)\left( {n - 3} \right)\left( {n - 4} \right) - 4\left( {n - 1} \right)\left( {n - 2} \right)\left( {n - 3} \right) - 30\left( {n - 2} \right)\left( {n - 3} \right) < 0\]
\[ \Rightarrow \left( {n - 2} \right)\left( {n - 3} \right)\left[ {\left( {n - 1} \right)\left( {n - 4} \right) - 4\left( {n - 1} \right) - 30} \right] < 0\]
\[ \Rightarrow \left( {n - 2} \right)\left( {n - 3} \right)\left[ {{n^2} - 5n + 4 - 4n + 4 - 30} \right] < 0\]
\[ \Rightarrow \left( {n - 2} \right)\left( {n - 3} \right)\left[ {{n^2} - 9n - 22} \right] < 0\]
\[ \Rightarrow \left( {n - 2} \right)\left( {n - 3} \right)\left( {n + 2} \right)\left( {n - 11} \right) < 0\]
Solving the above inequality, we get
\[n < 2\] , \[n < 3\], \[n < - 2\], and \[n < 11\]
\[ \Rightarrow - 2 < n < 2\] or \[3 < n < 11\]
\[ \Rightarrow \left( { - \infty ,2} \right) \cup \left( {3,11} \right)\]
\[ \Rightarrow \left( {0,2} \right) \cup \left( {3,11} \right)\]
But it is given that \[n \in N\]
So, \[n = 1,4,5,6,7,8,9,10\] \[.....\left( 1 \right)\]
Also, from the given inequality equation, we get
\[n - 1 \ge 4\], \[n - 1 \ge 3\], and \[n - 2 \ge 2\]
\[ \Rightarrow n \ge 5\], \[n \ge 4\], and \[n \ge 4\]
So, \[n \ge 5\] \[.....\left( 2 \right)\]
From the equations \[\left( 1 \right)\] and \[\left( 2 \right)\], we get
\[n = 5,6,7,8,9,10\]
Therefore, the values of \[n\] are \[\left\{ {5,6,7,8,9,10} \right\}\].
Option ‘A’ is correct
Note: Students directly solve the factorial equations without simplifying or cancelling it.
Factorial of a number is a product of all whole numbers less than that number up to 1.
It is defined as: \[n! = n\left( {n - 1} \right)\left( {n - 2} \right)....3 \times 2 \times 1\]
Formula Used: Permutation Formula: \[{}^n{P_r} = \dfrac{{n!}}{{\left( {n - r} \right)!}}\]
Combination Formula: \[{}^n{C_r} = \dfrac{{n!}}{{r!\left( {n - r} \right)!}}\]
Complete step by step solution: The given inequality equation is \[{}^{n - 1}{C_4} - {}^{n - 1}{C_3} - \dfrac{5}{4} \times {}^{n - 2}{P_2} < 0\].
Let’s simplify the inequality equation by applying the permutation and combination formulas.
We get,
\[\dfrac{{\left( {n - 1} \right)!}}{{4!\left( {n - 5} \right)!}} - \dfrac{{\left( {n - 1} \right)!}}{{3!\left( {n - 4} \right)!}} - \dfrac{5}{4} \times \dfrac{{\left( {n - 2} \right)!}}{{\left( {n - 4} \right)!}} < 0\]
Simplify the numerator and denominator by applying the factorial.
\[\dfrac{{\left( {n - 1} \right)\left( {n - 2} \right)\left( {n - 3} \right)\left( {n - 4} \right)\left( {n - 5} \right)!}}{{4!\left( {n - 5} \right)!}} - \dfrac{{\left( {n - 1} \right)\left( {n - 2} \right)\left( {n - 3} \right)\left( {n - 4} \right)!}}{{3!\left( {n - 4} \right)!}} - \dfrac{5}{4} \times \dfrac{{\left( {n - 2} \right)\left( {n - 3} \right)\left( {n - 4} \right)!}}{{\left( {n - 4} \right)!}} < 0\]
Cancel out the common terms from the numerator and the denominator.
\[\dfrac{{\left( {n - 1} \right)\left( {n - 2} \right)\left( {n - 3} \right)\left( {n - 4} \right)}}{{4!}} - \dfrac{{\left( {n - 1} \right)\left( {n - 2} \right)\left( {n - 3} \right)}}{{3!}} - \dfrac{5}{4}\left( {n - 2} \right)\left( {n - 3} \right) < 0\]
Multiply both sides by \[4!\].
\[\left( {n - 1} \right)\left( {n - 2} \right)\left( {n - 3} \right)\left( {n - 4} \right) - 4\left( {n - 1} \right)\left( {n - 2} \right)\left( {n - 3} \right) - 30\left( {n - 2} \right)\left( {n - 3} \right) < 0\]
\[ \Rightarrow \left( {n - 2} \right)\left( {n - 3} \right)\left[ {\left( {n - 1} \right)\left( {n - 4} \right) - 4\left( {n - 1} \right) - 30} \right] < 0\]
\[ \Rightarrow \left( {n - 2} \right)\left( {n - 3} \right)\left[ {{n^2} - 5n + 4 - 4n + 4 - 30} \right] < 0\]
\[ \Rightarrow \left( {n - 2} \right)\left( {n - 3} \right)\left[ {{n^2} - 9n - 22} \right] < 0\]
\[ \Rightarrow \left( {n - 2} \right)\left( {n - 3} \right)\left( {n + 2} \right)\left( {n - 11} \right) < 0\]
Solving the above inequality, we get
\[n < 2\] , \[n < 3\], \[n < - 2\], and \[n < 11\]
\[ \Rightarrow - 2 < n < 2\] or \[3 < n < 11\]
\[ \Rightarrow \left( { - \infty ,2} \right) \cup \left( {3,11} \right)\]
\[ \Rightarrow \left( {0,2} \right) \cup \left( {3,11} \right)\]
But it is given that \[n \in N\]
So, \[n = 1,4,5,6,7,8,9,10\] \[.....\left( 1 \right)\]
Also, from the given inequality equation, we get
\[n - 1 \ge 4\], \[n - 1 \ge 3\], and \[n - 2 \ge 2\]
\[ \Rightarrow n \ge 5\], \[n \ge 4\], and \[n \ge 4\]
So, \[n \ge 5\] \[.....\left( 2 \right)\]
From the equations \[\left( 1 \right)\] and \[\left( 2 \right)\], we get
\[n = 5,6,7,8,9,10\]
Therefore, the values of \[n\] are \[\left\{ {5,6,7,8,9,10} \right\}\].
Option ‘A’ is correct
Note: Students directly solve the factorial equations without simplifying or cancelling it.
Factorial of a number is a product of all whole numbers less than that number up to 1.
It is defined as: \[n! = n\left( {n - 1} \right)\left( {n - 2} \right)....3 \times 2 \times 1\]
Recently Updated Pages
If there are 25 railway stations on a railway line class 11 maths JEE_Main

Minimum area of the circle which touches the parabolas class 11 maths JEE_Main

Which of the following is the empty set A x x is a class 11 maths JEE_Main

The number of ways of selecting two squares on chessboard class 11 maths JEE_Main

Find the points common to the hyperbola 25x2 9y2 2-class-11-maths-JEE_Main

A box contains 6 balls which may be all of different class 11 maths JEE_Main

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Displacement-Time Graph and Velocity-Time Graph for JEE

Degree of Dissociation and Its Formula With Solved Example for JEE

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation

JoSAA JEE Main & Advanced 2025 Counselling: Registration Dates, Documents, Fees, Seat Allotment & Cut‑offs

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

NCERT Solutions for Class 11 Maths Chapter 4 Complex Numbers and Quadratic Equations

NCERT Solutions for Class 11 Maths Chapter 6 Permutations and Combinations

NCERT Solutions for Class 11 Maths In Hindi Chapter 1 Sets

JEE Advanced 2025: Dates, Registration, Syllabus, Eligibility Criteria and More
