
Find the value of \[n\] for which \[{}^{n - 1}{C_4} - {}^{n - 1}{C_3} - \dfrac{5}{4} \times {}^{n - 2}{P_2} < 0\] , where \[n \in N\].
A. \[\left\{ {5,6,7,8,9,10} \right\}\]
B. \[\left\{ {1,2,3,4,5,6,7,8,9,10} \right\}\]
C. \[\left\{ {1,4,5,6,7,8,9,10} \right\}\]
D. \[\left( { - \infty ,2} \right) \cup \left( {3,11} \right)\]
Answer
217.8k+ views
Hint: Here, one inequality equation is given. First, using the formulas of permutation and combination simplify the inequality equation. After that, solve the inequality equation by applying basic mathematical operations. In the end, check the values of \[n\] with the inequality equations and get the required answer.
Formula Used: Permutation Formula: \[{}^n{P_r} = \dfrac{{n!}}{{\left( {n - r} \right)!}}\]
Combination Formula: \[{}^n{C_r} = \dfrac{{n!}}{{r!\left( {n - r} \right)!}}\]
Complete step by step solution: The given inequality equation is \[{}^{n - 1}{C_4} - {}^{n - 1}{C_3} - \dfrac{5}{4} \times {}^{n - 2}{P_2} < 0\].
Let’s simplify the inequality equation by applying the permutation and combination formulas.
We get,
\[\dfrac{{\left( {n - 1} \right)!}}{{4!\left( {n - 5} \right)!}} - \dfrac{{\left( {n - 1} \right)!}}{{3!\left( {n - 4} \right)!}} - \dfrac{5}{4} \times \dfrac{{\left( {n - 2} \right)!}}{{\left( {n - 4} \right)!}} < 0\]
Simplify the numerator and denominator by applying the factorial.
\[\dfrac{{\left( {n - 1} \right)\left( {n - 2} \right)\left( {n - 3} \right)\left( {n - 4} \right)\left( {n - 5} \right)!}}{{4!\left( {n - 5} \right)!}} - \dfrac{{\left( {n - 1} \right)\left( {n - 2} \right)\left( {n - 3} \right)\left( {n - 4} \right)!}}{{3!\left( {n - 4} \right)!}} - \dfrac{5}{4} \times \dfrac{{\left( {n - 2} \right)\left( {n - 3} \right)\left( {n - 4} \right)!}}{{\left( {n - 4} \right)!}} < 0\]
Cancel out the common terms from the numerator and the denominator.
\[\dfrac{{\left( {n - 1} \right)\left( {n - 2} \right)\left( {n - 3} \right)\left( {n - 4} \right)}}{{4!}} - \dfrac{{\left( {n - 1} \right)\left( {n - 2} \right)\left( {n - 3} \right)}}{{3!}} - \dfrac{5}{4}\left( {n - 2} \right)\left( {n - 3} \right) < 0\]
Multiply both sides by \[4!\].
\[\left( {n - 1} \right)\left( {n - 2} \right)\left( {n - 3} \right)\left( {n - 4} \right) - 4\left( {n - 1} \right)\left( {n - 2} \right)\left( {n - 3} \right) - 30\left( {n - 2} \right)\left( {n - 3} \right) < 0\]
\[ \Rightarrow \left( {n - 2} \right)\left( {n - 3} \right)\left[ {\left( {n - 1} \right)\left( {n - 4} \right) - 4\left( {n - 1} \right) - 30} \right] < 0\]
\[ \Rightarrow \left( {n - 2} \right)\left( {n - 3} \right)\left[ {{n^2} - 5n + 4 - 4n + 4 - 30} \right] < 0\]
\[ \Rightarrow \left( {n - 2} \right)\left( {n - 3} \right)\left[ {{n^2} - 9n - 22} \right] < 0\]
\[ \Rightarrow \left( {n - 2} \right)\left( {n - 3} \right)\left( {n + 2} \right)\left( {n - 11} \right) < 0\]
Solving the above inequality, we get
\[n < 2\] , \[n < 3\], \[n < - 2\], and \[n < 11\]
\[ \Rightarrow - 2 < n < 2\] or \[3 < n < 11\]
\[ \Rightarrow \left( { - \infty ,2} \right) \cup \left( {3,11} \right)\]
\[ \Rightarrow \left( {0,2} \right) \cup \left( {3,11} \right)\]
But it is given that \[n \in N\]
So, \[n = 1,4,5,6,7,8,9,10\] \[.....\left( 1 \right)\]
Also, from the given inequality equation, we get
\[n - 1 \ge 4\], \[n - 1 \ge 3\], and \[n - 2 \ge 2\]
\[ \Rightarrow n \ge 5\], \[n \ge 4\], and \[n \ge 4\]
So, \[n \ge 5\] \[.....\left( 2 \right)\]
From the equations \[\left( 1 \right)\] and \[\left( 2 \right)\], we get
\[n = 5,6,7,8,9,10\]
Therefore, the values of \[n\] are \[\left\{ {5,6,7,8,9,10} \right\}\].
Option ‘A’ is correct
Note: Students directly solve the factorial equations without simplifying or cancelling it.
Factorial of a number is a product of all whole numbers less than that number up to 1.
It is defined as: \[n! = n\left( {n - 1} \right)\left( {n - 2} \right)....3 \times 2 \times 1\]
Formula Used: Permutation Formula: \[{}^n{P_r} = \dfrac{{n!}}{{\left( {n - r} \right)!}}\]
Combination Formula: \[{}^n{C_r} = \dfrac{{n!}}{{r!\left( {n - r} \right)!}}\]
Complete step by step solution: The given inequality equation is \[{}^{n - 1}{C_4} - {}^{n - 1}{C_3} - \dfrac{5}{4} \times {}^{n - 2}{P_2} < 0\].
Let’s simplify the inequality equation by applying the permutation and combination formulas.
We get,
\[\dfrac{{\left( {n - 1} \right)!}}{{4!\left( {n - 5} \right)!}} - \dfrac{{\left( {n - 1} \right)!}}{{3!\left( {n - 4} \right)!}} - \dfrac{5}{4} \times \dfrac{{\left( {n - 2} \right)!}}{{\left( {n - 4} \right)!}} < 0\]
Simplify the numerator and denominator by applying the factorial.
\[\dfrac{{\left( {n - 1} \right)\left( {n - 2} \right)\left( {n - 3} \right)\left( {n - 4} \right)\left( {n - 5} \right)!}}{{4!\left( {n - 5} \right)!}} - \dfrac{{\left( {n - 1} \right)\left( {n - 2} \right)\left( {n - 3} \right)\left( {n - 4} \right)!}}{{3!\left( {n - 4} \right)!}} - \dfrac{5}{4} \times \dfrac{{\left( {n - 2} \right)\left( {n - 3} \right)\left( {n - 4} \right)!}}{{\left( {n - 4} \right)!}} < 0\]
Cancel out the common terms from the numerator and the denominator.
\[\dfrac{{\left( {n - 1} \right)\left( {n - 2} \right)\left( {n - 3} \right)\left( {n - 4} \right)}}{{4!}} - \dfrac{{\left( {n - 1} \right)\left( {n - 2} \right)\left( {n - 3} \right)}}{{3!}} - \dfrac{5}{4}\left( {n - 2} \right)\left( {n - 3} \right) < 0\]
Multiply both sides by \[4!\].
\[\left( {n - 1} \right)\left( {n - 2} \right)\left( {n - 3} \right)\left( {n - 4} \right) - 4\left( {n - 1} \right)\left( {n - 2} \right)\left( {n - 3} \right) - 30\left( {n - 2} \right)\left( {n - 3} \right) < 0\]
\[ \Rightarrow \left( {n - 2} \right)\left( {n - 3} \right)\left[ {\left( {n - 1} \right)\left( {n - 4} \right) - 4\left( {n - 1} \right) - 30} \right] < 0\]
\[ \Rightarrow \left( {n - 2} \right)\left( {n - 3} \right)\left[ {{n^2} - 5n + 4 - 4n + 4 - 30} \right] < 0\]
\[ \Rightarrow \left( {n - 2} \right)\left( {n - 3} \right)\left[ {{n^2} - 9n - 22} \right] < 0\]
\[ \Rightarrow \left( {n - 2} \right)\left( {n - 3} \right)\left( {n + 2} \right)\left( {n - 11} \right) < 0\]
Solving the above inequality, we get
\[n < 2\] , \[n < 3\], \[n < - 2\], and \[n < 11\]
\[ \Rightarrow - 2 < n < 2\] or \[3 < n < 11\]
\[ \Rightarrow \left( { - \infty ,2} \right) \cup \left( {3,11} \right)\]
\[ \Rightarrow \left( {0,2} \right) \cup \left( {3,11} \right)\]
But it is given that \[n \in N\]
So, \[n = 1,4,5,6,7,8,9,10\] \[.....\left( 1 \right)\]
Also, from the given inequality equation, we get
\[n - 1 \ge 4\], \[n - 1 \ge 3\], and \[n - 2 \ge 2\]
\[ \Rightarrow n \ge 5\], \[n \ge 4\], and \[n \ge 4\]
So, \[n \ge 5\] \[.....\left( 2 \right)\]
From the equations \[\left( 1 \right)\] and \[\left( 2 \right)\], we get
\[n = 5,6,7,8,9,10\]
Therefore, the values of \[n\] are \[\left\{ {5,6,7,8,9,10} \right\}\].
Option ‘A’ is correct
Note: Students directly solve the factorial equations without simplifying or cancelling it.
Factorial of a number is a product of all whole numbers less than that number up to 1.
It is defined as: \[n! = n\left( {n - 1} \right)\left( {n - 2} \right)....3 \times 2 \times 1\]
Recently Updated Pages
Arithmetic, Geometric & Harmonic Progressions Explained

Cartesian Form of Vector Explained: Formula, Examples & Uses

Apparent Frequency Explained: Formula, Uses & Examples

Calorimetry: Definition, Principles & Calculations

Centrifugal Force Explained: Definition, Formula & Examples

Charge in a Magnetic Field: Definition, Formula & Examples

Trending doubts
JEE Main 2026: Application Form Open, Exam Dates, Syllabus, Eligibility & Question Papers

Derivation of Equation of Trajectory Explained for Students

Hybridisation in Chemistry – Concept, Types & Applications

Understanding the Angle of Deviation in a Prism

Understanding Collisions: Types and Examples for Students

Understanding Atomic Structure for Beginners

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

NCERT Solutions for Class 11 Maths Chapter 10 Conic Sections

NCERT Solutions for Class 11 Maths Chapter 9 Straight Lines

NCERT Solutions For Class 11 Maths Chapter 8 Sequences And Series

How to Convert a Galvanometer into an Ammeter or Voltmeter

NCERT Solutions For Class 11 Maths Chapter 12 Limits And Derivatives

