
Find the value of \[k\] if \[\;{\left( {10} \right)^9}\; + {\rm{ }}2{\left( {11} \right)^1}\;{\left( {10} \right)^{8\;}} + {\rm{ }}3{\left( {11} \right)^2}\;{\left( {10} \right)^7}\; + {\rm{ }} \ldots + {\rm{ }}10{\left( {11} \right)^9}\; = {\rm{ }}k{\left( {10} \right)^9}\]
A. \[100\]
B. \[110\]
C. \[\dfrac{{121}}{{100}}\]
D. \[\dfrac{{441}}{{100}}\]
Answer
217.5k+ views
Hint: We have given \[\;{\left( {10} \right)^9}\; + {\rm{ }}2{\left( {11} \right)^1}\;{\left( {10} \right)^{8\;}} + {\rm{ }}3{\left( {11} \right)^2}\;{\left( {10} \right)^7}\; + {\rm{ }} \ldots + {\rm{ }}10{\left( {11} \right)^9}\; = {\rm{ }}k{\left( {10} \right)^9}\] and we have to find the value of \[k\] in the given equation. We will use the concept simple mathematics and sum of geometric series in the given question. So firstly we will make the equation simpler by arithmetic’s and then find the value of \[k\].
Formula used: The formula of sum of geometric progression will be useful for this question
\[{S_n} = \dfrac{{a({r^n} - 1)}}{{r - 1}}\] where \[r \ne 1\]
Complete step-by-step solution:
Firstly we will cancel \[{10^9}\] from both sides
\[k{\rm{ }} = {\rm{ }}1 + {\rm{ }}2\left( {\dfrac{{11}}{{10}}} \right){\rm{ }} + {\rm{ }}3{\left( {\dfrac{{11}}{{10}}} \right)^2}\; + {\rm{ }} \ldots .10{\left( {\dfrac{{11}}{{10}}} \right)^9}\] … \[(1)\]
Now, we will multiply L.H.S and R.H.S by \[\dfrac{{11}}{{10}}\]
\[\left( {\dfrac{{11}}{{10}}} \right)k{\rm{ }} = {\rm{ }}\left( {\dfrac{{11}}{{10}}} \right){\rm{ }} + {\rm{ }}2{\left( {\dfrac{{11}}{{10}}} \right)^2}\; + {\rm{ }} \ldots . + {\rm{ }}9{\left( {\dfrac{{11}}{{10}}} \right)^{9\;}} + {\rm{ }}10{\left( {\dfrac{{11}}{{10}}} \right)^{10}}\] … \[(2)\]
Now, we will subtract equation \[(2)\] from equation \[(1)\]
\[\begin{array}{l}k\left( {1{\rm{ }}-{\rm{ }}\dfrac{{11}}{{10}}} \right){\rm{ }} = {\rm{ }}1 + {\rm{ }}\left( {\dfrac{{11}}{{10}}} \right){\rm{ }} + {\rm{ }}{\left( {\dfrac{{11}}{{10}}} \right)^2}\; + {\rm{ }} \ldots .{\left( {\dfrac{{11}}{{10}}} \right)^{9\;}}-{\rm{ }}10{\left( {\dfrac{{11}}{{10}}} \right)^{10}}\\k\dfrac{{\left( {10{\rm{ }}-{\rm{ }}11} \right)}}{{10}}{\rm{ }} = {\rm{ }}1\left[ {\dfrac{{{{\left( {\dfrac{{11}}{{10}}} \right)}^{10}}\;-{\rm{ }}1}}{{\left( {\dfrac{{11}}{{10}}} \right){\rm{ }} - 1}}} \right]{\rm{ }}-{\rm{ }}10{\left( {\dfrac{{11}}{{10}}} \right)^{10}}\end{array}\]
Using the formula for sum of geometric series
\[\begin{array}{l} - k{\rm{ }} = {\rm{ }}10\left[ {10{{\left( {\dfrac{{11}}{{10}}} \right)}^{10}}\;-{\rm{ }}10{\rm{ }}-{\rm{ }}10{{\left( {\dfrac{{11}}{{10}}} \right)}^{10}}} \right]\\ - k = 10[ - 10]\\ - k = - 100\\k = 100\end{array}\]
Therefore, the option (A) is correct.
Additional Information:A geometric progression, often referred to as a geometric sequence, is a series of non-zero values where each term following the first is obtained by multiplying the preceding value by a constant, non-zero number known as the common ratio. The terms that follow from multiplying or dividing each GP term by a non-zero value also belong to GP. The resulting terms are also in GP if all of the terms in GP are elevated to the same powers. The GP's standard form is\[a,{\rm{ }}ar,{\rm{ }}a{r^2}{\rm{ }},{\rm{ }}a{r^3}...\]
Note: Students generally make the mistake in calculation and applying the formula of sum of geometric progression. To avoid this mistake, the formula of sum of GP should be clear and calculation part should be strong. The fraction’s part calculation should be done carefully to get correct answer.
Formula used: The formula of sum of geometric progression will be useful for this question
\[{S_n} = \dfrac{{a({r^n} - 1)}}{{r - 1}}\] where \[r \ne 1\]
Complete step-by-step solution:
Firstly we will cancel \[{10^9}\] from both sides
\[k{\rm{ }} = {\rm{ }}1 + {\rm{ }}2\left( {\dfrac{{11}}{{10}}} \right){\rm{ }} + {\rm{ }}3{\left( {\dfrac{{11}}{{10}}} \right)^2}\; + {\rm{ }} \ldots .10{\left( {\dfrac{{11}}{{10}}} \right)^9}\] … \[(1)\]
Now, we will multiply L.H.S and R.H.S by \[\dfrac{{11}}{{10}}\]
\[\left( {\dfrac{{11}}{{10}}} \right)k{\rm{ }} = {\rm{ }}\left( {\dfrac{{11}}{{10}}} \right){\rm{ }} + {\rm{ }}2{\left( {\dfrac{{11}}{{10}}} \right)^2}\; + {\rm{ }} \ldots . + {\rm{ }}9{\left( {\dfrac{{11}}{{10}}} \right)^{9\;}} + {\rm{ }}10{\left( {\dfrac{{11}}{{10}}} \right)^{10}}\] … \[(2)\]
Now, we will subtract equation \[(2)\] from equation \[(1)\]
\[\begin{array}{l}k\left( {1{\rm{ }}-{\rm{ }}\dfrac{{11}}{{10}}} \right){\rm{ }} = {\rm{ }}1 + {\rm{ }}\left( {\dfrac{{11}}{{10}}} \right){\rm{ }} + {\rm{ }}{\left( {\dfrac{{11}}{{10}}} \right)^2}\; + {\rm{ }} \ldots .{\left( {\dfrac{{11}}{{10}}} \right)^{9\;}}-{\rm{ }}10{\left( {\dfrac{{11}}{{10}}} \right)^{10}}\\k\dfrac{{\left( {10{\rm{ }}-{\rm{ }}11} \right)}}{{10}}{\rm{ }} = {\rm{ }}1\left[ {\dfrac{{{{\left( {\dfrac{{11}}{{10}}} \right)}^{10}}\;-{\rm{ }}1}}{{\left( {\dfrac{{11}}{{10}}} \right){\rm{ }} - 1}}} \right]{\rm{ }}-{\rm{ }}10{\left( {\dfrac{{11}}{{10}}} \right)^{10}}\end{array}\]
Using the formula for sum of geometric series
\[\begin{array}{l} - k{\rm{ }} = {\rm{ }}10\left[ {10{{\left( {\dfrac{{11}}{{10}}} \right)}^{10}}\;-{\rm{ }}10{\rm{ }}-{\rm{ }}10{{\left( {\dfrac{{11}}{{10}}} \right)}^{10}}} \right]\\ - k = 10[ - 10]\\ - k = - 100\\k = 100\end{array}\]
Therefore, the option (A) is correct.
Additional Information:A geometric progression, often referred to as a geometric sequence, is a series of non-zero values where each term following the first is obtained by multiplying the preceding value by a constant, non-zero number known as the common ratio. The terms that follow from multiplying or dividing each GP term by a non-zero value also belong to GP. The resulting terms are also in GP if all of the terms in GP are elevated to the same powers. The GP's standard form is\[a,{\rm{ }}ar,{\rm{ }}a{r^2}{\rm{ }},{\rm{ }}a{r^3}...\]
Note: Students generally make the mistake in calculation and applying the formula of sum of geometric progression. To avoid this mistake, the formula of sum of GP should be clear and calculation part should be strong. The fraction’s part calculation should be done carefully to get correct answer.
Recently Updated Pages
Arithmetic, Geometric & Harmonic Progressions Explained

Cartesian Form of Vector Explained: Formula, Examples & Uses

Apparent Frequency Explained: Formula, Uses & Examples

Calorimetry: Definition, Principles & Calculations

Centrifugal Force Explained: Definition, Formula & Examples

Charge in a Magnetic Field: Definition, Formula & Examples

Trending doubts
JEE Main 2026: Application Form Open, Exam Dates, Syllabus, Eligibility & Question Papers

Derivation of Equation of Trajectory Explained for Students

Hybridisation in Chemistry – Concept, Types & Applications

Understanding the Angle of Deviation in a Prism

Understanding Collisions: Types and Examples for Students

How to Convert a Galvanometer into an Ammeter or Voltmeter

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

NCERT Solutions for Class 11 Maths Chapter 10 Conic Sections

NCERT Solutions for Class 11 Maths Chapter 9 Straight Lines

NCERT Solutions For Class 11 Maths Chapter 8 Sequences And Series

NCERT Solutions For Class 11 Maths Chapter 12 Limits And Derivatives

Understanding Atomic Structure for Beginners

