
Find the value of \[\int_0^{2n\pi } {\left( {\left| {\sin x} \right| - \left| {\dfrac{1}{2}\sin x} \right|} \right)dx} \].
A \[n\]
B \[2n\]
C \[2n\pi \]
D None of these.
Answer
161.1k+ views
Hint: To find value of definite integral first solve the integral. After simplification of integral substitute limits of the integral and perform subtraction.
Formula Used:\[\int {\sin xdx} = - \cos x + c\]
Complete step by step solution:The given definite integral is \[\int_0^{2n\pi } {\left( {\left| {\sin x} \right| - \left| {\dfrac{1}{2}\sin x} \right|} \right)dx} \].
First simplify the integral as follows,
\[\int_0^{2n\pi } {\left( {\left| {\sin x} \right| - \dfrac{1}{2}\left| {\sin x} \right|} \right)dx} \]
Further simplify the integral by taking common terms out.
\[\begin{array}{l}\int_0^{2n\pi } {\left( {\left| {\sin x} \right|\left( {1 - \dfrac{1}{2}} \right)} \right)dx} \\ \Rightarrow \int_0^{2n\pi } {\left( {\dfrac{1}{2}\left| {\sin x} \right|} \right)dx} \end{array}\]
Take constant out of integral.
\[ \Rightarrow \dfrac{1}{2}\int_0^{2n\pi } {\left| {\sin x} \right|dx} \]
Find integration with respect to x.
\[\dfrac{1}{2} \times 4n\int\limits_0^{\dfrac{\pi }{2}} {\sin xdx} \]
Now the integral becomes as follows.
\[ \Rightarrow 2n\int\limits_0^{\dfrac{\pi }{2}} {\sin xdx} \]
Now find integration
\[ \Rightarrow 2n\left[ { - \cos x} \right]_0^{\dfrac{\pi }{2}}\]
Substitute the limit in the expression.
\[\begin{array}{l}2n\left( { - \cos \dfrac{\pi }{2} - \left( { - \cos 0} \right)} \right)\\ \Rightarrow 2n\left( {0 + 1} \right)\\ \Rightarrow 2n\end{array}\]
Hence, the value of \[\int_0^{2n\pi } {\left( {\left| {\sin x} \right| - \left| {\dfrac{1}{2}\sin x} \right|} \right)dx} \]is \[2n\].
Option ‘B’ is correct
Note: The common mistake happen by student is taking integration of \[\int_0^{2n\pi } {\left| {\sin x} \right|dx} \]as \[\left[ { - \cos x} \right]_0^{2n\pi }\]which is wrong.
Formula Used:\[\int {\sin xdx} = - \cos x + c\]
Complete step by step solution:The given definite integral is \[\int_0^{2n\pi } {\left( {\left| {\sin x} \right| - \left| {\dfrac{1}{2}\sin x} \right|} \right)dx} \].
First simplify the integral as follows,
\[\int_0^{2n\pi } {\left( {\left| {\sin x} \right| - \dfrac{1}{2}\left| {\sin x} \right|} \right)dx} \]
Further simplify the integral by taking common terms out.
\[\begin{array}{l}\int_0^{2n\pi } {\left( {\left| {\sin x} \right|\left( {1 - \dfrac{1}{2}} \right)} \right)dx} \\ \Rightarrow \int_0^{2n\pi } {\left( {\dfrac{1}{2}\left| {\sin x} \right|} \right)dx} \end{array}\]
Take constant out of integral.
\[ \Rightarrow \dfrac{1}{2}\int_0^{2n\pi } {\left| {\sin x} \right|dx} \]
Find integration with respect to x.
\[\dfrac{1}{2} \times 4n\int\limits_0^{\dfrac{\pi }{2}} {\sin xdx} \]
Now the integral becomes as follows.
\[ \Rightarrow 2n\int\limits_0^{\dfrac{\pi }{2}} {\sin xdx} \]
Now find integration
\[ \Rightarrow 2n\left[ { - \cos x} \right]_0^{\dfrac{\pi }{2}}\]
Substitute the limit in the expression.
\[\begin{array}{l}2n\left( { - \cos \dfrac{\pi }{2} - \left( { - \cos 0} \right)} \right)\\ \Rightarrow 2n\left( {0 + 1} \right)\\ \Rightarrow 2n\end{array}\]
Hence, the value of \[\int_0^{2n\pi } {\left( {\left| {\sin x} \right| - \left| {\dfrac{1}{2}\sin x} \right|} \right)dx} \]is \[2n\].
Option ‘B’ is correct
Note: The common mistake happen by student is taking integration of \[\int_0^{2n\pi } {\left| {\sin x} \right|dx} \]as \[\left[ { - \cos x} \right]_0^{2n\pi }\]which is wrong.
Recently Updated Pages
Geometry of Complex Numbers – Topics, Reception, Audience and Related Readings

JEE Main 2021 July 25 Shift 1 Question Paper with Answer Key

JEE Main 2021 July 22 Shift 2 Question Paper with Answer Key

JEE Electricity and Magnetism Important Concepts and Tips for Exam Preparation

JEE Energetics Important Concepts and Tips for Exam Preparation

JEE Isolation, Preparation and Properties of Non-metals Important Concepts and Tips for Exam Preparation

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation

Displacement-Time Graph and Velocity-Time Graph for JEE

Degree of Dissociation and Its Formula With Solved Example for JEE

Free Radical Substitution Mechanism of Alkanes for JEE Main 2025

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

JEE Advanced 2025: Dates, Registration, Syllabus, Eligibility Criteria and More

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

JEE Advanced 2025 Notes

Learn About Angle Of Deviation In Prism: JEE Main Physics 2025

List of Fastest Century in IPL History
