
Find the value of given integration \[\int_{ - \pi }^\pi {\dfrac{{{{\sin }^4}x}}{{{{\sin }^4}x + {{\cos }^4}x}}dx} \].
A. \[\dfrac{\pi }{4}\]
B. \[\dfrac{\pi }{2}\]
C. \[\dfrac{{3\pi }}{2}\]
D. \[2\pi \]
E. \[\pi \]
Answer
232.8k+ views
Hint: To find the value of the integration first convert the function in integrable form. Then integrate the function and apply the limits.
Formula used: If the function is even then,
\[\int_{ - a}^a {f\left( x \right)dx} = 2\int_0^a {f\left( x \right)} \]
And
\[\int_0^{2a} {f\left( x \right)dx} = 2\int_0^a {f\left( x \right)} \] if \[f\left( {2a - x} \right) = f\left( x \right)\]
Also,
\[\int_a^b {f\left( x \right)dx} = \int_a^b {f\left( {a + b - x} \right)dx} \]
\[\begin{array}{l}\sin \left( {\dfrac{\pi }{2} - \theta } \right) = \cos \theta \\\cos \left( {\dfrac{\pi }{2} - \theta } \right) = \sin \theta \end{array}\]
Complete step by step solution: The given integral is \[\int_{ - \pi }^\pi {\dfrac{{{{\sin }^4}x}}{{{{\sin }^4}x + {{\cos }^4}x}}dx} \].
Consider \[I = \int_{ - \pi }^\pi {\dfrac{{{{\sin }^4}x}}{{{{\sin }^4}x + {{\cos }^4}x}}dx} \].
The function \[\dfrac{{{{\sin }^4}x}}{{{{\sin }^4}x + {{\cos }^4}x}}\]is a even function so integral becomes as follows.
\[I = 2\int_0^\pi {\dfrac{{{{\sin }^4}x}}{{{{\sin }^4}x + {{\cos }^4}x}}dx} \]
Further we can simplify the integral as follows.
\[I = 2 \times 2\int_0^{\dfrac{\pi }{2}} {\dfrac{{{{\sin }^4}x}}{{{{\sin }^4}x + {{\cos }^4}x}}dx} \]
So, the integral becomes as follows.
\[I = 4\int_0^{\dfrac{\pi }{2}} {\dfrac{{{{\sin }^4}x}}{{{{\sin }^4}x + {{\cos }^4}x}}dx} \] …(1)
Apply the property to simplify the function.
\[I = 4\int_0^{\dfrac{\pi }{2}} {\dfrac{{{{\sin }^4}\left( {\dfrac{\pi }{2} + 0 - x} \right)}}{{{{\sin }^4}\left( {\dfrac{\pi }{2} + 0 - x} \right) + {{\cos }^4}\left( {\dfrac{\pi }{2} + 0 - x} \right)}}dx} \]
Hence the integral becomes like this.
\[I = 4\int_0^{\dfrac{\pi }{2}} {\dfrac{{{{\sin }^4}\left( {\dfrac{\pi }{2} - x} \right)}}{{{{\sin }^4}\left( {\dfrac{\pi }{2} - x} \right) + {{\cos }^4}\left( {\dfrac{\pi }{2} - x} \right)}}dx} \]
Here, apply the formula to further simplify.
\[I = 4\int_0^{\dfrac{\pi }{2}} {\dfrac{{{{\cos }^4}x}}{{{{\cos }^4}x + {{\sin }^4}x}}dx} \] …(2)
Now add equation 1 and equation 2.
\[I + I = 4\int_0^{\dfrac{\pi }{2}} {\dfrac{{{{\sin }^4}x}}{{{{\sin }^4}x + {{\cos }^4}x}}dx} + 4\int_0^{\dfrac{\pi }{2}} {\dfrac{{{{\cos }^4}x}}{{{{\cos }^4}x + {{\sin }^4}x}}dx} \]
Simplify the equation.
\[\begin{array}{l}2I = 4\int_0^{\dfrac{\pi }{2}} {\dfrac{{{{\sin }^4}x + {{\cos }^4}x}}{{{{\sin }^4}x + {{\cos }^4}x}}dx} \\2I = 4\int_0^{\dfrac{\pi }{2}} {1dx} \end{array}\]
Evaluate the integral.
\[2I = 4\left[ x \right]_0^{\dfrac{\pi }{2}}\]
Substitute the limits and simplify it
\[\begin{array}{l}2I = 4\left[ {\dfrac{\pi }{2} - 0} \right]\\2I = 2\pi \end{array}\]
Divide by \[2\] on both sides of the equation.
\[I = \pi \]
Hence the value of \[\int_{ - \pi }^\pi {\dfrac{{{{\sin }^4}x}}{{{{\sin }^4}x + {{\cos }^4}x}}dx} \] is \[\pi \].
Thus, Option (E) is correct.
Note: The common mistake happens while solving this type of question is students solve the function which leads the question into complication. Instead of that as the function, apply the formula and solve the integral.
Formula used: If the function is even then,
\[\int_{ - a}^a {f\left( x \right)dx} = 2\int_0^a {f\left( x \right)} \]
And
\[\int_0^{2a} {f\left( x \right)dx} = 2\int_0^a {f\left( x \right)} \] if \[f\left( {2a - x} \right) = f\left( x \right)\]
Also,
\[\int_a^b {f\left( x \right)dx} = \int_a^b {f\left( {a + b - x} \right)dx} \]
\[\begin{array}{l}\sin \left( {\dfrac{\pi }{2} - \theta } \right) = \cos \theta \\\cos \left( {\dfrac{\pi }{2} - \theta } \right) = \sin \theta \end{array}\]
Complete step by step solution: The given integral is \[\int_{ - \pi }^\pi {\dfrac{{{{\sin }^4}x}}{{{{\sin }^4}x + {{\cos }^4}x}}dx} \].
Consider \[I = \int_{ - \pi }^\pi {\dfrac{{{{\sin }^4}x}}{{{{\sin }^4}x + {{\cos }^4}x}}dx} \].
The function \[\dfrac{{{{\sin }^4}x}}{{{{\sin }^4}x + {{\cos }^4}x}}\]is a even function so integral becomes as follows.
\[I = 2\int_0^\pi {\dfrac{{{{\sin }^4}x}}{{{{\sin }^4}x + {{\cos }^4}x}}dx} \]
Further we can simplify the integral as follows.
\[I = 2 \times 2\int_0^{\dfrac{\pi }{2}} {\dfrac{{{{\sin }^4}x}}{{{{\sin }^4}x + {{\cos }^4}x}}dx} \]
So, the integral becomes as follows.
\[I = 4\int_0^{\dfrac{\pi }{2}} {\dfrac{{{{\sin }^4}x}}{{{{\sin }^4}x + {{\cos }^4}x}}dx} \] …(1)
Apply the property to simplify the function.
\[I = 4\int_0^{\dfrac{\pi }{2}} {\dfrac{{{{\sin }^4}\left( {\dfrac{\pi }{2} + 0 - x} \right)}}{{{{\sin }^4}\left( {\dfrac{\pi }{2} + 0 - x} \right) + {{\cos }^4}\left( {\dfrac{\pi }{2} + 0 - x} \right)}}dx} \]
Hence the integral becomes like this.
\[I = 4\int_0^{\dfrac{\pi }{2}} {\dfrac{{{{\sin }^4}\left( {\dfrac{\pi }{2} - x} \right)}}{{{{\sin }^4}\left( {\dfrac{\pi }{2} - x} \right) + {{\cos }^4}\left( {\dfrac{\pi }{2} - x} \right)}}dx} \]
Here, apply the formula to further simplify.
\[I = 4\int_0^{\dfrac{\pi }{2}} {\dfrac{{{{\cos }^4}x}}{{{{\cos }^4}x + {{\sin }^4}x}}dx} \] …(2)
Now add equation 1 and equation 2.
\[I + I = 4\int_0^{\dfrac{\pi }{2}} {\dfrac{{{{\sin }^4}x}}{{{{\sin }^4}x + {{\cos }^4}x}}dx} + 4\int_0^{\dfrac{\pi }{2}} {\dfrac{{{{\cos }^4}x}}{{{{\cos }^4}x + {{\sin }^4}x}}dx} \]
Simplify the equation.
\[\begin{array}{l}2I = 4\int_0^{\dfrac{\pi }{2}} {\dfrac{{{{\sin }^4}x + {{\cos }^4}x}}{{{{\sin }^4}x + {{\cos }^4}x}}dx} \\2I = 4\int_0^{\dfrac{\pi }{2}} {1dx} \end{array}\]
Evaluate the integral.
\[2I = 4\left[ x \right]_0^{\dfrac{\pi }{2}}\]
Substitute the limits and simplify it
\[\begin{array}{l}2I = 4\left[ {\dfrac{\pi }{2} - 0} \right]\\2I = 2\pi \end{array}\]
Divide by \[2\] on both sides of the equation.
\[I = \pi \]
Hence the value of \[\int_{ - \pi }^\pi {\dfrac{{{{\sin }^4}x}}{{{{\sin }^4}x + {{\cos }^4}x}}dx} \] is \[\pi \].
Thus, Option (E) is correct.
Note: The common mistake happens while solving this type of question is students solve the function which leads the question into complication. Instead of that as the function, apply the formula and solve the integral.
Recently Updated Pages
States of Matter Chapter For JEE Main Chemistry

Mutually Exclusive vs Independent Events: Key Differences Explained

JEE Main Participating Colleges 2026 - A Complete List of Top Colleges

[Awaiting the three content sources: Ask AI Response, Competitor 1 Content, and Competitor 2 Content. Please provide those to continue with the analysis and optimization.]

Sign up for JEE Main 2026 Live Classes - Vedantu

JEE Main 2026 Helpline Numbers - Center Contact, Phone Number, Address

Trending doubts
JEE Main 2026: Session 2 Registration Open, City Intimation Slip, Exam Dates, Syllabus & Eligibility

JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

JEE Main Marking Scheme 2026- Paper-Wise Marks Distribution and Negative Marking Details

Understanding the Angle of Deviation in a Prism

Hybridisation in Chemistry – Concept, Types & Applications

How to Convert a Galvanometer into an Ammeter or Voltmeter

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Understanding the Electric Field of a Uniformly Charged Ring

Derivation of Equation of Trajectory Explained for Students

Understanding Electromagnetic Waves and Their Importance

Inductive Effect and Its Role in Acidic Strength

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

