
Find the value of given integration \[\int_{ - \pi }^\pi {\dfrac{{{{\sin }^4}x}}{{{{\sin }^4}x + {{\cos }^4}x}}dx} \].
A. \[\dfrac{\pi }{4}\]
B. \[\dfrac{\pi }{2}\]
C. \[\dfrac{{3\pi }}{2}\]
D. \[2\pi \]
E. \[\pi \]
Answer
182.1k+ views
Hint: To find the value of the integration first convert the function in integrable form. Then integrate the function and apply the limits.
Formula used: If the function is even then,
\[\int_{ - a}^a {f\left( x \right)dx} = 2\int_0^a {f\left( x \right)} \]
And
\[\int_0^{2a} {f\left( x \right)dx} = 2\int_0^a {f\left( x \right)} \] if \[f\left( {2a - x} \right) = f\left( x \right)\]
Also,
\[\int_a^b {f\left( x \right)dx} = \int_a^b {f\left( {a + b - x} \right)dx} \]
\[\begin{array}{l}\sin \left( {\dfrac{\pi }{2} - \theta } \right) = \cos \theta \\\cos \left( {\dfrac{\pi }{2} - \theta } \right) = \sin \theta \end{array}\]
Complete step by step solution: The given integral is \[\int_{ - \pi }^\pi {\dfrac{{{{\sin }^4}x}}{{{{\sin }^4}x + {{\cos }^4}x}}dx} \].
Consider \[I = \int_{ - \pi }^\pi {\dfrac{{{{\sin }^4}x}}{{{{\sin }^4}x + {{\cos }^4}x}}dx} \].
The function \[\dfrac{{{{\sin }^4}x}}{{{{\sin }^4}x + {{\cos }^4}x}}\]is a even function so integral becomes as follows.
\[I = 2\int_0^\pi {\dfrac{{{{\sin }^4}x}}{{{{\sin }^4}x + {{\cos }^4}x}}dx} \]
Further we can simplify the integral as follows.
\[I = 2 \times 2\int_0^{\dfrac{\pi }{2}} {\dfrac{{{{\sin }^4}x}}{{{{\sin }^4}x + {{\cos }^4}x}}dx} \]
So, the integral becomes as follows.
\[I = 4\int_0^{\dfrac{\pi }{2}} {\dfrac{{{{\sin }^4}x}}{{{{\sin }^4}x + {{\cos }^4}x}}dx} \] …(1)
Apply the property to simplify the function.
\[I = 4\int_0^{\dfrac{\pi }{2}} {\dfrac{{{{\sin }^4}\left( {\dfrac{\pi }{2} + 0 - x} \right)}}{{{{\sin }^4}\left( {\dfrac{\pi }{2} + 0 - x} \right) + {{\cos }^4}\left( {\dfrac{\pi }{2} + 0 - x} \right)}}dx} \]
Hence the integral becomes like this.
\[I = 4\int_0^{\dfrac{\pi }{2}} {\dfrac{{{{\sin }^4}\left( {\dfrac{\pi }{2} - x} \right)}}{{{{\sin }^4}\left( {\dfrac{\pi }{2} - x} \right) + {{\cos }^4}\left( {\dfrac{\pi }{2} - x} \right)}}dx} \]
Here, apply the formula to further simplify.
\[I = 4\int_0^{\dfrac{\pi }{2}} {\dfrac{{{{\cos }^4}x}}{{{{\cos }^4}x + {{\sin }^4}x}}dx} \] …(2)
Now add equation 1 and equation 2.
\[I + I = 4\int_0^{\dfrac{\pi }{2}} {\dfrac{{{{\sin }^4}x}}{{{{\sin }^4}x + {{\cos }^4}x}}dx} + 4\int_0^{\dfrac{\pi }{2}} {\dfrac{{{{\cos }^4}x}}{{{{\cos }^4}x + {{\sin }^4}x}}dx} \]
Simplify the equation.
\[\begin{array}{l}2I = 4\int_0^{\dfrac{\pi }{2}} {\dfrac{{{{\sin }^4}x + {{\cos }^4}x}}{{{{\sin }^4}x + {{\cos }^4}x}}dx} \\2I = 4\int_0^{\dfrac{\pi }{2}} {1dx} \end{array}\]
Evaluate the integral.
\[2I = 4\left[ x \right]_0^{\dfrac{\pi }{2}}\]
Substitute the limits and simplify it
\[\begin{array}{l}2I = 4\left[ {\dfrac{\pi }{2} - 0} \right]\\2I = 2\pi \end{array}\]
Divide by \[2\] on both sides of the equation.
\[I = \pi \]
Hence the value of \[\int_{ - \pi }^\pi {\dfrac{{{{\sin }^4}x}}{{{{\sin }^4}x + {{\cos }^4}x}}dx} \] is \[\pi \].
Thus, Option (E) is correct.
Note: The common mistake happens while solving this type of question is students solve the function which leads the question into complication. Instead of that as the function, apply the formula and solve the integral.
Formula used: If the function is even then,
\[\int_{ - a}^a {f\left( x \right)dx} = 2\int_0^a {f\left( x \right)} \]
And
\[\int_0^{2a} {f\left( x \right)dx} = 2\int_0^a {f\left( x \right)} \] if \[f\left( {2a - x} \right) = f\left( x \right)\]
Also,
\[\int_a^b {f\left( x \right)dx} = \int_a^b {f\left( {a + b - x} \right)dx} \]
\[\begin{array}{l}\sin \left( {\dfrac{\pi }{2} - \theta } \right) = \cos \theta \\\cos \left( {\dfrac{\pi }{2} - \theta } \right) = \sin \theta \end{array}\]
Complete step by step solution: The given integral is \[\int_{ - \pi }^\pi {\dfrac{{{{\sin }^4}x}}{{{{\sin }^4}x + {{\cos }^4}x}}dx} \].
Consider \[I = \int_{ - \pi }^\pi {\dfrac{{{{\sin }^4}x}}{{{{\sin }^4}x + {{\cos }^4}x}}dx} \].
The function \[\dfrac{{{{\sin }^4}x}}{{{{\sin }^4}x + {{\cos }^4}x}}\]is a even function so integral becomes as follows.
\[I = 2\int_0^\pi {\dfrac{{{{\sin }^4}x}}{{{{\sin }^4}x + {{\cos }^4}x}}dx} \]
Further we can simplify the integral as follows.
\[I = 2 \times 2\int_0^{\dfrac{\pi }{2}} {\dfrac{{{{\sin }^4}x}}{{{{\sin }^4}x + {{\cos }^4}x}}dx} \]
So, the integral becomes as follows.
\[I = 4\int_0^{\dfrac{\pi }{2}} {\dfrac{{{{\sin }^4}x}}{{{{\sin }^4}x + {{\cos }^4}x}}dx} \] …(1)
Apply the property to simplify the function.
\[I = 4\int_0^{\dfrac{\pi }{2}} {\dfrac{{{{\sin }^4}\left( {\dfrac{\pi }{2} + 0 - x} \right)}}{{{{\sin }^4}\left( {\dfrac{\pi }{2} + 0 - x} \right) + {{\cos }^4}\left( {\dfrac{\pi }{2} + 0 - x} \right)}}dx} \]
Hence the integral becomes like this.
\[I = 4\int_0^{\dfrac{\pi }{2}} {\dfrac{{{{\sin }^4}\left( {\dfrac{\pi }{2} - x} \right)}}{{{{\sin }^4}\left( {\dfrac{\pi }{2} - x} \right) + {{\cos }^4}\left( {\dfrac{\pi }{2} - x} \right)}}dx} \]
Here, apply the formula to further simplify.
\[I = 4\int_0^{\dfrac{\pi }{2}} {\dfrac{{{{\cos }^4}x}}{{{{\cos }^4}x + {{\sin }^4}x}}dx} \] …(2)
Now add equation 1 and equation 2.
\[I + I = 4\int_0^{\dfrac{\pi }{2}} {\dfrac{{{{\sin }^4}x}}{{{{\sin }^4}x + {{\cos }^4}x}}dx} + 4\int_0^{\dfrac{\pi }{2}} {\dfrac{{{{\cos }^4}x}}{{{{\cos }^4}x + {{\sin }^4}x}}dx} \]
Simplify the equation.
\[\begin{array}{l}2I = 4\int_0^{\dfrac{\pi }{2}} {\dfrac{{{{\sin }^4}x + {{\cos }^4}x}}{{{{\sin }^4}x + {{\cos }^4}x}}dx} \\2I = 4\int_0^{\dfrac{\pi }{2}} {1dx} \end{array}\]
Evaluate the integral.
\[2I = 4\left[ x \right]_0^{\dfrac{\pi }{2}}\]
Substitute the limits and simplify it
\[\begin{array}{l}2I = 4\left[ {\dfrac{\pi }{2} - 0} \right]\\2I = 2\pi \end{array}\]
Divide by \[2\] on both sides of the equation.
\[I = \pi \]
Hence the value of \[\int_{ - \pi }^\pi {\dfrac{{{{\sin }^4}x}}{{{{\sin }^4}x + {{\cos }^4}x}}dx} \] is \[\pi \].
Thus, Option (E) is correct.
Note: The common mistake happens while solving this type of question is students solve the function which leads the question into complication. Instead of that as the function, apply the formula and solve the integral.
Recently Updated Pages
Difference Between Area and Volume

Difference Between Mutually Exclusive and Independent Events

JEE Main 2023 April 13 Shift 2 Question Paper with Answer Key

JEE Main 2023 April 11 Shift 2 Question Paper with Answer Key

JEE Main 2023 April 10 Shift 2 Question Paper with Answer Key

JEE Main 2023 (January 31st Shift 2) Physics Question Paper with Answer Key

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Displacement-Time Graph and Velocity-Time Graph for JEE

Atomic Structure - Electrons, Protons, Neutrons and Atomic Models

Learn About Angle Of Deviation In Prism: JEE Main Physics 2025

What is Hybridisation in Chemistry?

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Electron Gain Enthalpy and Electron Affinity for JEE

JEE Main 2025: Conversion of Galvanometer Into Ammeter And Voltmeter in Physics

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation

Collision - Important Concepts and Tips for JEE
