
Find the value of given integration \[\int_{ - \pi }^\pi {\dfrac{{{{\sin }^4}x}}{{{{\sin }^4}x + {{\cos }^4}x}}dx} \].
A. \[\dfrac{\pi }{4}\]
B. \[\dfrac{\pi }{2}\]
C. \[\dfrac{{3\pi }}{2}\]
D. \[2\pi \]
E. \[\pi \]
Answer
163.2k+ views
Hint: To find the value of the integration first convert the function in integrable form. Then integrate the function and apply the limits.
Formula used: If the function is even then,
\[\int_{ - a}^a {f\left( x \right)dx} = 2\int_0^a {f\left( x \right)} \]
And
\[\int_0^{2a} {f\left( x \right)dx} = 2\int_0^a {f\left( x \right)} \] if \[f\left( {2a - x} \right) = f\left( x \right)\]
Also,
\[\int_a^b {f\left( x \right)dx} = \int_a^b {f\left( {a + b - x} \right)dx} \]
\[\begin{array}{l}\sin \left( {\dfrac{\pi }{2} - \theta } \right) = \cos \theta \\\cos \left( {\dfrac{\pi }{2} - \theta } \right) = \sin \theta \end{array}\]
Complete step by step solution: The given integral is \[\int_{ - \pi }^\pi {\dfrac{{{{\sin }^4}x}}{{{{\sin }^4}x + {{\cos }^4}x}}dx} \].
Consider \[I = \int_{ - \pi }^\pi {\dfrac{{{{\sin }^4}x}}{{{{\sin }^4}x + {{\cos }^4}x}}dx} \].
The function \[\dfrac{{{{\sin }^4}x}}{{{{\sin }^4}x + {{\cos }^4}x}}\]is a even function so integral becomes as follows.
\[I = 2\int_0^\pi {\dfrac{{{{\sin }^4}x}}{{{{\sin }^4}x + {{\cos }^4}x}}dx} \]
Further we can simplify the integral as follows.
\[I = 2 \times 2\int_0^{\dfrac{\pi }{2}} {\dfrac{{{{\sin }^4}x}}{{{{\sin }^4}x + {{\cos }^4}x}}dx} \]
So, the integral becomes as follows.
\[I = 4\int_0^{\dfrac{\pi }{2}} {\dfrac{{{{\sin }^4}x}}{{{{\sin }^4}x + {{\cos }^4}x}}dx} \] …(1)
Apply the property to simplify the function.
\[I = 4\int_0^{\dfrac{\pi }{2}} {\dfrac{{{{\sin }^4}\left( {\dfrac{\pi }{2} + 0 - x} \right)}}{{{{\sin }^4}\left( {\dfrac{\pi }{2} + 0 - x} \right) + {{\cos }^4}\left( {\dfrac{\pi }{2} + 0 - x} \right)}}dx} \]
Hence the integral becomes like this.
\[I = 4\int_0^{\dfrac{\pi }{2}} {\dfrac{{{{\sin }^4}\left( {\dfrac{\pi }{2} - x} \right)}}{{{{\sin }^4}\left( {\dfrac{\pi }{2} - x} \right) + {{\cos }^4}\left( {\dfrac{\pi }{2} - x} \right)}}dx} \]
Here, apply the formula to further simplify.
\[I = 4\int_0^{\dfrac{\pi }{2}} {\dfrac{{{{\cos }^4}x}}{{{{\cos }^4}x + {{\sin }^4}x}}dx} \] …(2)
Now add equation 1 and equation 2.
\[I + I = 4\int_0^{\dfrac{\pi }{2}} {\dfrac{{{{\sin }^4}x}}{{{{\sin }^4}x + {{\cos }^4}x}}dx} + 4\int_0^{\dfrac{\pi }{2}} {\dfrac{{{{\cos }^4}x}}{{{{\cos }^4}x + {{\sin }^4}x}}dx} \]
Simplify the equation.
\[\begin{array}{l}2I = 4\int_0^{\dfrac{\pi }{2}} {\dfrac{{{{\sin }^4}x + {{\cos }^4}x}}{{{{\sin }^4}x + {{\cos }^4}x}}dx} \\2I = 4\int_0^{\dfrac{\pi }{2}} {1dx} \end{array}\]
Evaluate the integral.
\[2I = 4\left[ x \right]_0^{\dfrac{\pi }{2}}\]
Substitute the limits and simplify it
\[\begin{array}{l}2I = 4\left[ {\dfrac{\pi }{2} - 0} \right]\\2I = 2\pi \end{array}\]
Divide by \[2\] on both sides of the equation.
\[I = \pi \]
Hence the value of \[\int_{ - \pi }^\pi {\dfrac{{{{\sin }^4}x}}{{{{\sin }^4}x + {{\cos }^4}x}}dx} \] is \[\pi \].
Thus, Option (E) is correct.
Note: The common mistake happens while solving this type of question is students solve the function which leads the question into complication. Instead of that as the function, apply the formula and solve the integral.
Formula used: If the function is even then,
\[\int_{ - a}^a {f\left( x \right)dx} = 2\int_0^a {f\left( x \right)} \]
And
\[\int_0^{2a} {f\left( x \right)dx} = 2\int_0^a {f\left( x \right)} \] if \[f\left( {2a - x} \right) = f\left( x \right)\]
Also,
\[\int_a^b {f\left( x \right)dx} = \int_a^b {f\left( {a + b - x} \right)dx} \]
\[\begin{array}{l}\sin \left( {\dfrac{\pi }{2} - \theta } \right) = \cos \theta \\\cos \left( {\dfrac{\pi }{2} - \theta } \right) = \sin \theta \end{array}\]
Complete step by step solution: The given integral is \[\int_{ - \pi }^\pi {\dfrac{{{{\sin }^4}x}}{{{{\sin }^4}x + {{\cos }^4}x}}dx} \].
Consider \[I = \int_{ - \pi }^\pi {\dfrac{{{{\sin }^4}x}}{{{{\sin }^4}x + {{\cos }^4}x}}dx} \].
The function \[\dfrac{{{{\sin }^4}x}}{{{{\sin }^4}x + {{\cos }^4}x}}\]is a even function so integral becomes as follows.
\[I = 2\int_0^\pi {\dfrac{{{{\sin }^4}x}}{{{{\sin }^4}x + {{\cos }^4}x}}dx} \]
Further we can simplify the integral as follows.
\[I = 2 \times 2\int_0^{\dfrac{\pi }{2}} {\dfrac{{{{\sin }^4}x}}{{{{\sin }^4}x + {{\cos }^4}x}}dx} \]
So, the integral becomes as follows.
\[I = 4\int_0^{\dfrac{\pi }{2}} {\dfrac{{{{\sin }^4}x}}{{{{\sin }^4}x + {{\cos }^4}x}}dx} \] …(1)
Apply the property to simplify the function.
\[I = 4\int_0^{\dfrac{\pi }{2}} {\dfrac{{{{\sin }^4}\left( {\dfrac{\pi }{2} + 0 - x} \right)}}{{{{\sin }^4}\left( {\dfrac{\pi }{2} + 0 - x} \right) + {{\cos }^4}\left( {\dfrac{\pi }{2} + 0 - x} \right)}}dx} \]
Hence the integral becomes like this.
\[I = 4\int_0^{\dfrac{\pi }{2}} {\dfrac{{{{\sin }^4}\left( {\dfrac{\pi }{2} - x} \right)}}{{{{\sin }^4}\left( {\dfrac{\pi }{2} - x} \right) + {{\cos }^4}\left( {\dfrac{\pi }{2} - x} \right)}}dx} \]
Here, apply the formula to further simplify.
\[I = 4\int_0^{\dfrac{\pi }{2}} {\dfrac{{{{\cos }^4}x}}{{{{\cos }^4}x + {{\sin }^4}x}}dx} \] …(2)
Now add equation 1 and equation 2.
\[I + I = 4\int_0^{\dfrac{\pi }{2}} {\dfrac{{{{\sin }^4}x}}{{{{\sin }^4}x + {{\cos }^4}x}}dx} + 4\int_0^{\dfrac{\pi }{2}} {\dfrac{{{{\cos }^4}x}}{{{{\cos }^4}x + {{\sin }^4}x}}dx} \]
Simplify the equation.
\[\begin{array}{l}2I = 4\int_0^{\dfrac{\pi }{2}} {\dfrac{{{{\sin }^4}x + {{\cos }^4}x}}{{{{\sin }^4}x + {{\cos }^4}x}}dx} \\2I = 4\int_0^{\dfrac{\pi }{2}} {1dx} \end{array}\]
Evaluate the integral.
\[2I = 4\left[ x \right]_0^{\dfrac{\pi }{2}}\]
Substitute the limits and simplify it
\[\begin{array}{l}2I = 4\left[ {\dfrac{\pi }{2} - 0} \right]\\2I = 2\pi \end{array}\]
Divide by \[2\] on both sides of the equation.
\[I = \pi \]
Hence the value of \[\int_{ - \pi }^\pi {\dfrac{{{{\sin }^4}x}}{{{{\sin }^4}x + {{\cos }^4}x}}dx} \] is \[\pi \].
Thus, Option (E) is correct.
Note: The common mistake happens while solving this type of question is students solve the function which leads the question into complication. Instead of that as the function, apply the formula and solve the integral.
Recently Updated Pages
Fluid Pressure - Important Concepts and Tips for JEE

JEE Main 2023 (February 1st Shift 2) Physics Question Paper with Answer Key

Impulse Momentum Theorem Important Concepts and Tips for JEE

Graphical Methods of Vector Addition - Important Concepts for JEE

JEE Main 2022 (July 29th Shift 1) Chemistry Question Paper with Answer Key

JEE Main 2023 (February 1st Shift 1) Physics Question Paper with Answer Key

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Displacement-Time Graph and Velocity-Time Graph for JEE

Degree of Dissociation and Its Formula With Solved Example for JEE

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation

JoSAA JEE Main & Advanced 2025 Counselling: Registration Dates, Documents, Fees, Seat Allotment & Cut‑offs

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

NEET 2025 – Every New Update You Need to Know

Verb Forms Guide: V1, V2, V3, V4, V5 Explained

NEET Total Marks 2025

1 Billion in Rupees
