
Find the value of given integration \[\int_{ - \pi }^\pi {\dfrac{{{{\sin }^4}x}}{{{{\sin }^4}x + {{\cos }^4}x}}dx} \].
A. \[\dfrac{\pi }{4}\]
B. \[\dfrac{\pi }{2}\]
C. \[\dfrac{{3\pi }}{2}\]
D. \[2\pi \]
E. \[\pi \]
Answer
164.7k+ views
Hint: To find the value of the integration first convert the function in integrable form. Then integrate the function and apply the limits.
Formula used: If the function is even then,
\[\int_{ - a}^a {f\left( x \right)dx} = 2\int_0^a {f\left( x \right)} \]
And
\[\int_0^{2a} {f\left( x \right)dx} = 2\int_0^a {f\left( x \right)} \] if \[f\left( {2a - x} \right) = f\left( x \right)\]
Also,
\[\int_a^b {f\left( x \right)dx} = \int_a^b {f\left( {a + b - x} \right)dx} \]
\[\begin{array}{l}\sin \left( {\dfrac{\pi }{2} - \theta } \right) = \cos \theta \\\cos \left( {\dfrac{\pi }{2} - \theta } \right) = \sin \theta \end{array}\]
Complete step by step solution: The given integral is \[\int_{ - \pi }^\pi {\dfrac{{{{\sin }^4}x}}{{{{\sin }^4}x + {{\cos }^4}x}}dx} \].
Consider \[I = \int_{ - \pi }^\pi {\dfrac{{{{\sin }^4}x}}{{{{\sin }^4}x + {{\cos }^4}x}}dx} \].
The function \[\dfrac{{{{\sin }^4}x}}{{{{\sin }^4}x + {{\cos }^4}x}}\]is a even function so integral becomes as follows.
\[I = 2\int_0^\pi {\dfrac{{{{\sin }^4}x}}{{{{\sin }^4}x + {{\cos }^4}x}}dx} \]
Further we can simplify the integral as follows.
\[I = 2 \times 2\int_0^{\dfrac{\pi }{2}} {\dfrac{{{{\sin }^4}x}}{{{{\sin }^4}x + {{\cos }^4}x}}dx} \]
So, the integral becomes as follows.
\[I = 4\int_0^{\dfrac{\pi }{2}} {\dfrac{{{{\sin }^4}x}}{{{{\sin }^4}x + {{\cos }^4}x}}dx} \] …(1)
Apply the property to simplify the function.
\[I = 4\int_0^{\dfrac{\pi }{2}} {\dfrac{{{{\sin }^4}\left( {\dfrac{\pi }{2} + 0 - x} \right)}}{{{{\sin }^4}\left( {\dfrac{\pi }{2} + 0 - x} \right) + {{\cos }^4}\left( {\dfrac{\pi }{2} + 0 - x} \right)}}dx} \]
Hence the integral becomes like this.
\[I = 4\int_0^{\dfrac{\pi }{2}} {\dfrac{{{{\sin }^4}\left( {\dfrac{\pi }{2} - x} \right)}}{{{{\sin }^4}\left( {\dfrac{\pi }{2} - x} \right) + {{\cos }^4}\left( {\dfrac{\pi }{2} - x} \right)}}dx} \]
Here, apply the formula to further simplify.
\[I = 4\int_0^{\dfrac{\pi }{2}} {\dfrac{{{{\cos }^4}x}}{{{{\cos }^4}x + {{\sin }^4}x}}dx} \] …(2)
Now add equation 1 and equation 2.
\[I + I = 4\int_0^{\dfrac{\pi }{2}} {\dfrac{{{{\sin }^4}x}}{{{{\sin }^4}x + {{\cos }^4}x}}dx} + 4\int_0^{\dfrac{\pi }{2}} {\dfrac{{{{\cos }^4}x}}{{{{\cos }^4}x + {{\sin }^4}x}}dx} \]
Simplify the equation.
\[\begin{array}{l}2I = 4\int_0^{\dfrac{\pi }{2}} {\dfrac{{{{\sin }^4}x + {{\cos }^4}x}}{{{{\sin }^4}x + {{\cos }^4}x}}dx} \\2I = 4\int_0^{\dfrac{\pi }{2}} {1dx} \end{array}\]
Evaluate the integral.
\[2I = 4\left[ x \right]_0^{\dfrac{\pi }{2}}\]
Substitute the limits and simplify it
\[\begin{array}{l}2I = 4\left[ {\dfrac{\pi }{2} - 0} \right]\\2I = 2\pi \end{array}\]
Divide by \[2\] on both sides of the equation.
\[I = \pi \]
Hence the value of \[\int_{ - \pi }^\pi {\dfrac{{{{\sin }^4}x}}{{{{\sin }^4}x + {{\cos }^4}x}}dx} \] is \[\pi \].
Thus, Option (E) is correct.
Note: The common mistake happens while solving this type of question is students solve the function which leads the question into complication. Instead of that as the function, apply the formula and solve the integral.
Formula used: If the function is even then,
\[\int_{ - a}^a {f\left( x \right)dx} = 2\int_0^a {f\left( x \right)} \]
And
\[\int_0^{2a} {f\left( x \right)dx} = 2\int_0^a {f\left( x \right)} \] if \[f\left( {2a - x} \right) = f\left( x \right)\]
Also,
\[\int_a^b {f\left( x \right)dx} = \int_a^b {f\left( {a + b - x} \right)dx} \]
\[\begin{array}{l}\sin \left( {\dfrac{\pi }{2} - \theta } \right) = \cos \theta \\\cos \left( {\dfrac{\pi }{2} - \theta } \right) = \sin \theta \end{array}\]
Complete step by step solution: The given integral is \[\int_{ - \pi }^\pi {\dfrac{{{{\sin }^4}x}}{{{{\sin }^4}x + {{\cos }^4}x}}dx} \].
Consider \[I = \int_{ - \pi }^\pi {\dfrac{{{{\sin }^4}x}}{{{{\sin }^4}x + {{\cos }^4}x}}dx} \].
The function \[\dfrac{{{{\sin }^4}x}}{{{{\sin }^4}x + {{\cos }^4}x}}\]is a even function so integral becomes as follows.
\[I = 2\int_0^\pi {\dfrac{{{{\sin }^4}x}}{{{{\sin }^4}x + {{\cos }^4}x}}dx} \]
Further we can simplify the integral as follows.
\[I = 2 \times 2\int_0^{\dfrac{\pi }{2}} {\dfrac{{{{\sin }^4}x}}{{{{\sin }^4}x + {{\cos }^4}x}}dx} \]
So, the integral becomes as follows.
\[I = 4\int_0^{\dfrac{\pi }{2}} {\dfrac{{{{\sin }^4}x}}{{{{\sin }^4}x + {{\cos }^4}x}}dx} \] …(1)
Apply the property to simplify the function.
\[I = 4\int_0^{\dfrac{\pi }{2}} {\dfrac{{{{\sin }^4}\left( {\dfrac{\pi }{2} + 0 - x} \right)}}{{{{\sin }^4}\left( {\dfrac{\pi }{2} + 0 - x} \right) + {{\cos }^4}\left( {\dfrac{\pi }{2} + 0 - x} \right)}}dx} \]
Hence the integral becomes like this.
\[I = 4\int_0^{\dfrac{\pi }{2}} {\dfrac{{{{\sin }^4}\left( {\dfrac{\pi }{2} - x} \right)}}{{{{\sin }^4}\left( {\dfrac{\pi }{2} - x} \right) + {{\cos }^4}\left( {\dfrac{\pi }{2} - x} \right)}}dx} \]
Here, apply the formula to further simplify.
\[I = 4\int_0^{\dfrac{\pi }{2}} {\dfrac{{{{\cos }^4}x}}{{{{\cos }^4}x + {{\sin }^4}x}}dx} \] …(2)
Now add equation 1 and equation 2.
\[I + I = 4\int_0^{\dfrac{\pi }{2}} {\dfrac{{{{\sin }^4}x}}{{{{\sin }^4}x + {{\cos }^4}x}}dx} + 4\int_0^{\dfrac{\pi }{2}} {\dfrac{{{{\cos }^4}x}}{{{{\cos }^4}x + {{\sin }^4}x}}dx} \]
Simplify the equation.
\[\begin{array}{l}2I = 4\int_0^{\dfrac{\pi }{2}} {\dfrac{{{{\sin }^4}x + {{\cos }^4}x}}{{{{\sin }^4}x + {{\cos }^4}x}}dx} \\2I = 4\int_0^{\dfrac{\pi }{2}} {1dx} \end{array}\]
Evaluate the integral.
\[2I = 4\left[ x \right]_0^{\dfrac{\pi }{2}}\]
Substitute the limits and simplify it
\[\begin{array}{l}2I = 4\left[ {\dfrac{\pi }{2} - 0} \right]\\2I = 2\pi \end{array}\]
Divide by \[2\] on both sides of the equation.
\[I = \pi \]
Hence the value of \[\int_{ - \pi }^\pi {\dfrac{{{{\sin }^4}x}}{{{{\sin }^4}x + {{\cos }^4}x}}dx} \] is \[\pi \].
Thus, Option (E) is correct.
Note: The common mistake happens while solving this type of question is students solve the function which leads the question into complication. Instead of that as the function, apply the formula and solve the integral.
Recently Updated Pages
Geometry of Complex Numbers – Topics, Reception, Audience and Related Readings

JEE Main 2021 July 25 Shift 1 Question Paper with Answer Key

JEE Main 2021 July 22 Shift 2 Question Paper with Answer Key

JEE Atomic Structure and Chemical Bonding important Concepts and Tips

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

JEE Electricity and Magnetism Important Concepts and Tips for Exam Preparation

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

Atomic Structure - Electrons, Protons, Neutrons and Atomic Models

Displacement-Time Graph and Velocity-Time Graph for JEE

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Learn About Angle Of Deviation In Prism: JEE Main Physics 2025

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

Degree of Dissociation and Its Formula With Solved Example for JEE

Instantaneous Velocity - Formula based Examples for JEE

JEE Main 2025: Conversion of Galvanometer Into Ammeter And Voltmeter in Physics

JEE Advanced 2025 Notes
