
Find the value of $f\left[ {\dfrac{{\left( {3x + {x^3}} \right)}}{{\left( {1 + 3{x^2}} \right)}}} \right] - f\left[ {\dfrac{{\left( {2x} \right)}}{{\left( {1 + {x^2}} \right)}}} \right]$ given that $f\left( x \right) = \log \left[ {\dfrac{{\left( {1 + x} \right)}}{{\left( {1 - x} \right)}}} \right]$where $ - 1 < x < 1$.
A. ${\left[ {f\left( x \right)} \right]^3}$
B. ${\left[ {f\left( x \right)} \right]^2}$
C. $ - f\left( x \right)$
D. $f\left( x \right)$
Answer
164.7k+ views
Hint: First we substitute $x$ by $\dfrac{{\left( {3x + {x^3}} \right)}}{{\left( {1 + 3{x^2}} \right)}}$ and $\dfrac{{\left( {2x} \right)}}{{\left( {1 + {x^2}} \right)}}$ in the given expression, then simplify the given function and after that we use logarithm properties and we get the required answer.
Formula Used:
Substitution process $x$ by $\dfrac{{\left( {3x + {x^3}} \right)}}{{\left( {1 + 3{x^2}} \right)}}$ and $\dfrac{{\left( {2x} \right)}}{{\left( {1 + {x^2}} \right)}}$
logarithm properties $\log {x^n} = n\log x$
Algebraic formulas ${\left( {a + b} \right)^2} = {a^2} + 2ab + {b^2}$ , ${\left( {a - b} \right)^2} = {a^2} - 2ab + {b^2}$ and
${\left( {a + b} \right)^3} = {a^3} + 3{a^2}b + 3a{b^2} + {b^3}$ , ${\left( {a - b} \right)^3} = {a^3} + 3{a^2}b - 3a{b^2} + {b^3}$
Complete step by step solution:
Given we have: $f\left( x \right) = \log \left[ {\dfrac{{\left( {1 + x} \right)}}{{\left( {1 - x} \right)}}} \right]$
Now, for $f\left[ {\dfrac{{\left( {3x + {x^3}} \right)}}{{\left( {1 + 3{x^2}} \right)}}} \right] - f\left[ {\dfrac{{\left( {2x} \right)}}{{\left( {1 + {x^2}} \right)}}} \right]$, we have:
$ = \log \left[ {\dfrac{{1 + \left( {\dfrac{{3x + 3{x^3}}}{{1 + 3{x^2}}}} \right)}}{{1 - \left( {\dfrac{{3x + 3{x^3}}}{{1 + 3{x^2}}}} \right)}}} \right] - \log \left[ {\dfrac{{1 + \left( {\dfrac{{2x}}{{1 + {x^2}}}} \right)}}{{1 - \left( {\dfrac{{2x}}{{1 + {x^2}}}} \right)}}} \right]$
Simplifying and we get
$ = \log \left[ {\dfrac{{\dfrac{{1 + 3{x^2} + 3x + 3{x^3}}}{{1 + 3{x^2}}}}}{{\dfrac{{1 + 3{x^2} - 3x + 3{x^3}}}{{1 + 3{x^2}}}}}} \right] - \log \left[ {\dfrac{{\dfrac{{1 + {x^2} + 2x}}{{1 + {x^2}}}}}{{\dfrac{{1 + {x^2} - 2x}}{{1 + {x^2}}}}}} \right]$
Using the algebraic formulas ${\left( {a + b} \right)^2} = {a^2} + 2ab + {b^2}$ , ${\left( {a - b} \right)^2} = {a^2} - 2ab + {b^2}$ and
${\left( {a + b} \right)^3} = {a^3} + 3{a^2}b + 3a{b^2} + {b^3}$ , ${\left( {a - b} \right)^3} = {a^3} + 3{a^2}b - 3a{b^2} + {b^3}$ and we get
$ = \log {\left( {\dfrac{{1 + x}}{{1 - x}}} \right)^3} - \log {\left( {\dfrac{{1 + x}}{{1 - x}}} \right)^2}$
using logarithm formula $\log {x^n} = n\log x$ and we get
$ = 3\log \left( {\dfrac{{1 + x}}{{1 - x}}} \right) - 2\log \left( {\dfrac{{1 + x}}{{1 - x}}} \right)$
$ = \log \left( {\dfrac{{1 + x}}{{1 - x}}} \right)$
$ = f\left( x \right)$
Option ‘D’ is correct
Note: If you're unsure what a function is, it is a special connection between every element in one set and just one element in another. Both sets, though, must not be empty. The conventional way to express function is $f\left( x \right)$.
Formula Used:
Substitution process $x$ by $\dfrac{{\left( {3x + {x^3}} \right)}}{{\left( {1 + 3{x^2}} \right)}}$ and $\dfrac{{\left( {2x} \right)}}{{\left( {1 + {x^2}} \right)}}$
logarithm properties $\log {x^n} = n\log x$
Algebraic formulas ${\left( {a + b} \right)^2} = {a^2} + 2ab + {b^2}$ , ${\left( {a - b} \right)^2} = {a^2} - 2ab + {b^2}$ and
${\left( {a + b} \right)^3} = {a^3} + 3{a^2}b + 3a{b^2} + {b^3}$ , ${\left( {a - b} \right)^3} = {a^3} + 3{a^2}b - 3a{b^2} + {b^3}$
Complete step by step solution:
Given we have: $f\left( x \right) = \log \left[ {\dfrac{{\left( {1 + x} \right)}}{{\left( {1 - x} \right)}}} \right]$
Now, for $f\left[ {\dfrac{{\left( {3x + {x^3}} \right)}}{{\left( {1 + 3{x^2}} \right)}}} \right] - f\left[ {\dfrac{{\left( {2x} \right)}}{{\left( {1 + {x^2}} \right)}}} \right]$, we have:
$ = \log \left[ {\dfrac{{1 + \left( {\dfrac{{3x + 3{x^3}}}{{1 + 3{x^2}}}} \right)}}{{1 - \left( {\dfrac{{3x + 3{x^3}}}{{1 + 3{x^2}}}} \right)}}} \right] - \log \left[ {\dfrac{{1 + \left( {\dfrac{{2x}}{{1 + {x^2}}}} \right)}}{{1 - \left( {\dfrac{{2x}}{{1 + {x^2}}}} \right)}}} \right]$
Simplifying and we get
$ = \log \left[ {\dfrac{{\dfrac{{1 + 3{x^2} + 3x + 3{x^3}}}{{1 + 3{x^2}}}}}{{\dfrac{{1 + 3{x^2} - 3x + 3{x^3}}}{{1 + 3{x^2}}}}}} \right] - \log \left[ {\dfrac{{\dfrac{{1 + {x^2} + 2x}}{{1 + {x^2}}}}}{{\dfrac{{1 + {x^2} - 2x}}{{1 + {x^2}}}}}} \right]$
Using the algebraic formulas ${\left( {a + b} \right)^2} = {a^2} + 2ab + {b^2}$ , ${\left( {a - b} \right)^2} = {a^2} - 2ab + {b^2}$ and
${\left( {a + b} \right)^3} = {a^3} + 3{a^2}b + 3a{b^2} + {b^3}$ , ${\left( {a - b} \right)^3} = {a^3} + 3{a^2}b - 3a{b^2} + {b^3}$ and we get
$ = \log {\left( {\dfrac{{1 + x}}{{1 - x}}} \right)^3} - \log {\left( {\dfrac{{1 + x}}{{1 - x}}} \right)^2}$
using logarithm formula $\log {x^n} = n\log x$ and we get
$ = 3\log \left( {\dfrac{{1 + x}}{{1 - x}}} \right) - 2\log \left( {\dfrac{{1 + x}}{{1 - x}}} \right)$
$ = \log \left( {\dfrac{{1 + x}}{{1 - x}}} \right)$
$ = f\left( x \right)$
Option ‘D’ is correct
Note: If you're unsure what a function is, it is a special connection between every element in one set and just one element in another. Both sets, though, must not be empty. The conventional way to express function is $f\left( x \right)$.
Recently Updated Pages
Geometry of Complex Numbers – Topics, Reception, Audience and Related Readings

JEE Main 2021 July 25 Shift 1 Question Paper with Answer Key

JEE Main 2021 July 22 Shift 2 Question Paper with Answer Key

JEE Atomic Structure and Chemical Bonding important Concepts and Tips

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

JEE Electricity and Magnetism Important Concepts and Tips for Exam Preparation

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

Atomic Structure - Electrons, Protons, Neutrons and Atomic Models

Displacement-Time Graph and Velocity-Time Graph for JEE

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Learn About Angle Of Deviation In Prism: JEE Main Physics 2025

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

Degree of Dissociation and Its Formula With Solved Example for JEE

Instantaneous Velocity - Formula based Examples for JEE

JEE Main 2025: Conversion of Galvanometer Into Ammeter And Voltmeter in Physics

JEE Advanced 2025 Notes
