
Find the value of $f\left[ {\dfrac{{\left( {3x + {x^3}} \right)}}{{\left( {1 + 3{x^2}} \right)}}} \right] - f\left[ {\dfrac{{\left( {2x} \right)}}{{\left( {1 + {x^2}} \right)}}} \right]$ given that $f\left( x \right) = \log \left[ {\dfrac{{\left( {1 + x} \right)}}{{\left( {1 - x} \right)}}} \right]$where $ - 1 < x < 1$.
A. ${\left[ {f\left( x \right)} \right]^3}$
B. ${\left[ {f\left( x \right)} \right]^2}$
C. $ - f\left( x \right)$
D. $f\left( x \right)$
Answer
233.1k+ views
Hint: First we substitute $x$ by $\dfrac{{\left( {3x + {x^3}} \right)}}{{\left( {1 + 3{x^2}} \right)}}$ and $\dfrac{{\left( {2x} \right)}}{{\left( {1 + {x^2}} \right)}}$ in the given expression, then simplify the given function and after that we use logarithm properties and we get the required answer.
Formula Used:
Substitution process $x$ by $\dfrac{{\left( {3x + {x^3}} \right)}}{{\left( {1 + 3{x^2}} \right)}}$ and $\dfrac{{\left( {2x} \right)}}{{\left( {1 + {x^2}} \right)}}$
logarithm properties $\log {x^n} = n\log x$
Algebraic formulas ${\left( {a + b} \right)^2} = {a^2} + 2ab + {b^2}$ , ${\left( {a - b} \right)^2} = {a^2} - 2ab + {b^2}$ and
${\left( {a + b} \right)^3} = {a^3} + 3{a^2}b + 3a{b^2} + {b^3}$ , ${\left( {a - b} \right)^3} = {a^3} + 3{a^2}b - 3a{b^2} + {b^3}$
Complete step by step solution:
Given we have: $f\left( x \right) = \log \left[ {\dfrac{{\left( {1 + x} \right)}}{{\left( {1 - x} \right)}}} \right]$
Now, for $f\left[ {\dfrac{{\left( {3x + {x^3}} \right)}}{{\left( {1 + 3{x^2}} \right)}}} \right] - f\left[ {\dfrac{{\left( {2x} \right)}}{{\left( {1 + {x^2}} \right)}}} \right]$, we have:
$ = \log \left[ {\dfrac{{1 + \left( {\dfrac{{3x + 3{x^3}}}{{1 + 3{x^2}}}} \right)}}{{1 - \left( {\dfrac{{3x + 3{x^3}}}{{1 + 3{x^2}}}} \right)}}} \right] - \log \left[ {\dfrac{{1 + \left( {\dfrac{{2x}}{{1 + {x^2}}}} \right)}}{{1 - \left( {\dfrac{{2x}}{{1 + {x^2}}}} \right)}}} \right]$
Simplifying and we get
$ = \log \left[ {\dfrac{{\dfrac{{1 + 3{x^2} + 3x + 3{x^3}}}{{1 + 3{x^2}}}}}{{\dfrac{{1 + 3{x^2} - 3x + 3{x^3}}}{{1 + 3{x^2}}}}}} \right] - \log \left[ {\dfrac{{\dfrac{{1 + {x^2} + 2x}}{{1 + {x^2}}}}}{{\dfrac{{1 + {x^2} - 2x}}{{1 + {x^2}}}}}} \right]$
Using the algebraic formulas ${\left( {a + b} \right)^2} = {a^2} + 2ab + {b^2}$ , ${\left( {a - b} \right)^2} = {a^2} - 2ab + {b^2}$ and
${\left( {a + b} \right)^3} = {a^3} + 3{a^2}b + 3a{b^2} + {b^3}$ , ${\left( {a - b} \right)^3} = {a^3} + 3{a^2}b - 3a{b^2} + {b^3}$ and we get
$ = \log {\left( {\dfrac{{1 + x}}{{1 - x}}} \right)^3} - \log {\left( {\dfrac{{1 + x}}{{1 - x}}} \right)^2}$
using logarithm formula $\log {x^n} = n\log x$ and we get
$ = 3\log \left( {\dfrac{{1 + x}}{{1 - x}}} \right) - 2\log \left( {\dfrac{{1 + x}}{{1 - x}}} \right)$
$ = \log \left( {\dfrac{{1 + x}}{{1 - x}}} \right)$
$ = f\left( x \right)$
Option ‘D’ is correct
Note: If you're unsure what a function is, it is a special connection between every element in one set and just one element in another. Both sets, though, must not be empty. The conventional way to express function is $f\left( x \right)$.
Formula Used:
Substitution process $x$ by $\dfrac{{\left( {3x + {x^3}} \right)}}{{\left( {1 + 3{x^2}} \right)}}$ and $\dfrac{{\left( {2x} \right)}}{{\left( {1 + {x^2}} \right)}}$
logarithm properties $\log {x^n} = n\log x$
Algebraic formulas ${\left( {a + b} \right)^2} = {a^2} + 2ab + {b^2}$ , ${\left( {a - b} \right)^2} = {a^2} - 2ab + {b^2}$ and
${\left( {a + b} \right)^3} = {a^3} + 3{a^2}b + 3a{b^2} + {b^3}$ , ${\left( {a - b} \right)^3} = {a^3} + 3{a^2}b - 3a{b^2} + {b^3}$
Complete step by step solution:
Given we have: $f\left( x \right) = \log \left[ {\dfrac{{\left( {1 + x} \right)}}{{\left( {1 - x} \right)}}} \right]$
Now, for $f\left[ {\dfrac{{\left( {3x + {x^3}} \right)}}{{\left( {1 + 3{x^2}} \right)}}} \right] - f\left[ {\dfrac{{\left( {2x} \right)}}{{\left( {1 + {x^2}} \right)}}} \right]$, we have:
$ = \log \left[ {\dfrac{{1 + \left( {\dfrac{{3x + 3{x^3}}}{{1 + 3{x^2}}}} \right)}}{{1 - \left( {\dfrac{{3x + 3{x^3}}}{{1 + 3{x^2}}}} \right)}}} \right] - \log \left[ {\dfrac{{1 + \left( {\dfrac{{2x}}{{1 + {x^2}}}} \right)}}{{1 - \left( {\dfrac{{2x}}{{1 + {x^2}}}} \right)}}} \right]$
Simplifying and we get
$ = \log \left[ {\dfrac{{\dfrac{{1 + 3{x^2} + 3x + 3{x^3}}}{{1 + 3{x^2}}}}}{{\dfrac{{1 + 3{x^2} - 3x + 3{x^3}}}{{1 + 3{x^2}}}}}} \right] - \log \left[ {\dfrac{{\dfrac{{1 + {x^2} + 2x}}{{1 + {x^2}}}}}{{\dfrac{{1 + {x^2} - 2x}}{{1 + {x^2}}}}}} \right]$
Using the algebraic formulas ${\left( {a + b} \right)^2} = {a^2} + 2ab + {b^2}$ , ${\left( {a - b} \right)^2} = {a^2} - 2ab + {b^2}$ and
${\left( {a + b} \right)^3} = {a^3} + 3{a^2}b + 3a{b^2} + {b^3}$ , ${\left( {a - b} \right)^3} = {a^3} + 3{a^2}b - 3a{b^2} + {b^3}$ and we get
$ = \log {\left( {\dfrac{{1 + x}}{{1 - x}}} \right)^3} - \log {\left( {\dfrac{{1 + x}}{{1 - x}}} \right)^2}$
using logarithm formula $\log {x^n} = n\log x$ and we get
$ = 3\log \left( {\dfrac{{1 + x}}{{1 - x}}} \right) - 2\log \left( {\dfrac{{1 + x}}{{1 - x}}} \right)$
$ = \log \left( {\dfrac{{1 + x}}{{1 - x}}} \right)$
$ = f\left( x \right)$
Option ‘D’ is correct
Note: If you're unsure what a function is, it is a special connection between every element in one set and just one element in another. Both sets, though, must not be empty. The conventional way to express function is $f\left( x \right)$.
Recently Updated Pages
Geometry of Complex Numbers Explained

JEE General Topics in Chemistry Important Concepts and Tips

JEE Extractive Metallurgy Important Concepts and Tips for Exam Preparation

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

JEE Atomic Structure and Chemical Bonding important Concepts and Tips

Electricity and Magnetism Explained: Key Concepts & Applications

Trending doubts
JEE Main 2026: Session 2 Registration Open, City Intimation Slip, Exam Dates, Syllabus & Eligibility

JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

JEE Main Marking Scheme 2026- Paper-Wise Marks Distribution and Negative Marking Details

Understanding the Angle of Deviation in a Prism

Hybridisation in Chemistry – Concept, Types & Applications

How to Convert a Galvanometer into an Ammeter or Voltmeter

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Understanding the Electric Field of a Uniformly Charged Ring

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

Derivation of Equation of Trajectory Explained for Students

Understanding Electromagnetic Waves and Their Importance

Understanding How a Current Loop Acts as a Magnetic Dipole

