
Find the value of \[\dfrac{d}{{dx}}\left[ {{{\tan }^{ - 1}}\sqrt {\dfrac{{1 - \cos x}}{{1 + \cos x}}} } \right]\]
A. \[1/2\]
B. \[0\]
C. \[1\]
D. \[ - 1/2\]
Answer
161.7k+ views
Hint: In this question, we need to find the value of \[\dfrac{d}{{dx}}\left[ {{{\tan }^{ - 1}}\sqrt {\dfrac{{1 - \cos x}}{{1 + \cos x}}} } \right]\]. For this, we have to simplify \[{\tan ^{ - 1}}\sqrt {\dfrac{{1 - \cos x}}{{1 + \cos x}}} \] first. After that, we will find the derivative of the result so that we will get the desired result.
Formula used: The following trigonometric identities are used to solve this question.
\[1 - \cos \theta = 2{\sin ^2}\left( {\theta /2} \right)\] and \[1 + \cos \theta = 2{\cos ^2}\left( {\theta /2} \right)\]
Here, half-angle formulae play an important role while solving this question.
Also, \[\dfrac{{\sin \theta }}{{\cos \theta }} = \tan \theta \Rightarrow \dfrac{{\sin \left( {\theta /2} \right)}}{{\cos \left( {\theta /2} \right)}} = \tan \left( {\theta /2} \right)\] and \[\left[ {{{\tan }^{ - 1}}\left( {\tan \theta } \right)} \right] = \theta \]
Complete step-by-step solution:
Consider first \[\left[ {{{\tan }^{ - 1}}\sqrt {\dfrac{{1 - \cos x}}{{1 + \cos x}}} } \right]\]
Let us simplify the above mathematical trigonometric expression.
But we know that \[1 - \cos \theta = 2{\sin ^2}\left( {\theta /2} \right)\] and \[1 + \cos \theta = 2{\cos ^2}\left( {\theta /2} \right)\]
Thus, we get
\[\left[ {{{\tan }^{ - 1}}\sqrt {\dfrac{{1 - \cos x}}{{1 + \cos x}}} } \right] = \left[ {{{\tan }^{ - 1}}\sqrt {\dfrac{{2{{\sin }^2}\left( {x/2} \right)}}{{2{{\cos }^2}\left( {x/2} \right)}}} } \right]\]
\[\left[ {{{\tan }^{ - 1}}\sqrt {\dfrac{{1 - \cos x}}{{1 + \cos x}}} } \right] = \left[ {{{\tan }^{ - 1}}\sqrt {\dfrac{{{{\sin }^2}\left( {x/2} \right)}}{{{{\cos }^2}\left( {x/2} \right)}}} } \right]\]
But we know that \[\dfrac{{\sin \theta }}{{\cos \theta }} = \tan \theta \Rightarrow \dfrac{{\sin \left( {\theta /2} \right)}}{{\cos \left( {\theta /2} \right)}} = \tan \left( {\theta /2} \right)\]
So, we get
\[\left[ {{{\tan }^{ - 1}}\sqrt {\dfrac{{1 - \cos x}}{{1 + \cos x}}} } \right] = \left[ {{{\tan }^{ - 1}}\sqrt {{{\tan }^2}\left( {x/2} \right)} } \right]\]
\[\left[ {{{\tan }^{ - 1}}\sqrt {\dfrac{{1 - \cos x}}{{1 + \cos x}}} } \right] = \left[ {{{\tan }^{ - 1}}\left( {\tan \left( {x/2} \right)} \right)} \right]\]
But \[\left[ {{{\tan }^{ - 1}}\left( {\tan \theta } \right)} \right] = \theta \]
Hence, we get
\[\left[ {{{\tan }^{ - 1}}\sqrt {\dfrac{{1 - \cos x}}{{1 + \cos x}}} } \right] = \left( {x/2} \right)\]
Now, we will find the value of \[\dfrac{d}{{dx}}\left[ {{{\tan }^{ - 1}}\sqrt {\dfrac{{1 - \cos x}}{{1 + \cos x}}} } \right]\]
But \[\left[ {{{\tan }^{ - 1}}\sqrt {\dfrac{{1 - \cos x}}{{1 + \cos x}}} } \right] = \left( {x/2} \right)\]
Thus, we get
\[\dfrac{d}{{dx}}\left[ {{{\tan }^{ - 1}}\sqrt {\dfrac{{1 - \cos x}}{{1 + \cos x}}} } \right] = \dfrac{d}{{dx}}\left[ {\dfrac{x}{2}} \right]\]
\[\dfrac{d}{{dx}}\left[ {{{\tan }^{ - 1}}\sqrt {\dfrac{{1 - \cos x}}{{1 + \cos x}}} } \right] = \dfrac{1}{2}\dfrac{d}{{dx}}\left[ x \right]\]
But we know that \[\dfrac{d}{dx}\left[ x \right]=1\]
So, we get
\[\dfrac{d}{{dx}}\left[ {{{\tan }^{ - 1}}\sqrt {\dfrac{{1 - \cos x}}{{1 + \cos x}}} } \right] = \dfrac{1}{2}\left( 1 \right)\]
\[\dfrac{d}{{dx}}\left[ {{{\tan }^{ - 1}}\sqrt {\dfrac{{1 - \cos x}}{{1 + \cos x}}} } \right] = \dfrac{1}{2}\]
Hence, the value of \[\dfrac{d}{{dx}}\left[ {{{\tan }^{ - 1}}\sqrt {\dfrac{{1 - \cos x}}{{1 + \cos x}}} } \right]\] is \[1/2\]
Therefore, the correct option is (A).
Additional information: Trigonometric identities are equalities in trigonometry that are valid for any value of the occurring variables at which both halves of the equation are specified. In simple words, the trigonometric identities are equalities using trigonometric functions that remain true for any value of the variables involved, hence defining both halves of the equality. Hence, Sin, cos, and tan are the three primary trigonometric ratios whereas sec, cosec, and cot are the secondary trigonometric ratios. Also, all the trigonometric identities are associated with the right-angled triangle.
Note: Many students generally make mistakes in the simplification part of \[{\tan ^{ - 1}}\sqrt {\dfrac{{1 - \cos x}}{{1 + \cos x}}} \]. They may get wrong while writing the half angle formulae. It makes easy to find the value of \[\dfrac{d}{{dx}}\left[ {{{\tan }^{ - 1}}\sqrt {\dfrac{{1 - \cos x}}{{1 + \cos x}}} } \right]\] by taking the derivative of simplified expression of \[{\tan ^{ - 1}}\sqrt {\dfrac{{1 - \cos x}}{{1 + \cos x}}} \].
Formula used: The following trigonometric identities are used to solve this question.
\[1 - \cos \theta = 2{\sin ^2}\left( {\theta /2} \right)\] and \[1 + \cos \theta = 2{\cos ^2}\left( {\theta /2} \right)\]
Here, half-angle formulae play an important role while solving this question.
Also, \[\dfrac{{\sin \theta }}{{\cos \theta }} = \tan \theta \Rightarrow \dfrac{{\sin \left( {\theta /2} \right)}}{{\cos \left( {\theta /2} \right)}} = \tan \left( {\theta /2} \right)\] and \[\left[ {{{\tan }^{ - 1}}\left( {\tan \theta } \right)} \right] = \theta \]
Complete step-by-step solution:
Consider first \[\left[ {{{\tan }^{ - 1}}\sqrt {\dfrac{{1 - \cos x}}{{1 + \cos x}}} } \right]\]
Let us simplify the above mathematical trigonometric expression.
But we know that \[1 - \cos \theta = 2{\sin ^2}\left( {\theta /2} \right)\] and \[1 + \cos \theta = 2{\cos ^2}\left( {\theta /2} \right)\]
Thus, we get
\[\left[ {{{\tan }^{ - 1}}\sqrt {\dfrac{{1 - \cos x}}{{1 + \cos x}}} } \right] = \left[ {{{\tan }^{ - 1}}\sqrt {\dfrac{{2{{\sin }^2}\left( {x/2} \right)}}{{2{{\cos }^2}\left( {x/2} \right)}}} } \right]\]
\[\left[ {{{\tan }^{ - 1}}\sqrt {\dfrac{{1 - \cos x}}{{1 + \cos x}}} } \right] = \left[ {{{\tan }^{ - 1}}\sqrt {\dfrac{{{{\sin }^2}\left( {x/2} \right)}}{{{{\cos }^2}\left( {x/2} \right)}}} } \right]\]
But we know that \[\dfrac{{\sin \theta }}{{\cos \theta }} = \tan \theta \Rightarrow \dfrac{{\sin \left( {\theta /2} \right)}}{{\cos \left( {\theta /2} \right)}} = \tan \left( {\theta /2} \right)\]
So, we get
\[\left[ {{{\tan }^{ - 1}}\sqrt {\dfrac{{1 - \cos x}}{{1 + \cos x}}} } \right] = \left[ {{{\tan }^{ - 1}}\sqrt {{{\tan }^2}\left( {x/2} \right)} } \right]\]
\[\left[ {{{\tan }^{ - 1}}\sqrt {\dfrac{{1 - \cos x}}{{1 + \cos x}}} } \right] = \left[ {{{\tan }^{ - 1}}\left( {\tan \left( {x/2} \right)} \right)} \right]\]
But \[\left[ {{{\tan }^{ - 1}}\left( {\tan \theta } \right)} \right] = \theta \]
Hence, we get
\[\left[ {{{\tan }^{ - 1}}\sqrt {\dfrac{{1 - \cos x}}{{1 + \cos x}}} } \right] = \left( {x/2} \right)\]
Now, we will find the value of \[\dfrac{d}{{dx}}\left[ {{{\tan }^{ - 1}}\sqrt {\dfrac{{1 - \cos x}}{{1 + \cos x}}} } \right]\]
But \[\left[ {{{\tan }^{ - 1}}\sqrt {\dfrac{{1 - \cos x}}{{1 + \cos x}}} } \right] = \left( {x/2} \right)\]
Thus, we get
\[\dfrac{d}{{dx}}\left[ {{{\tan }^{ - 1}}\sqrt {\dfrac{{1 - \cos x}}{{1 + \cos x}}} } \right] = \dfrac{d}{{dx}}\left[ {\dfrac{x}{2}} \right]\]
\[\dfrac{d}{{dx}}\left[ {{{\tan }^{ - 1}}\sqrt {\dfrac{{1 - \cos x}}{{1 + \cos x}}} } \right] = \dfrac{1}{2}\dfrac{d}{{dx}}\left[ x \right]\]
But we know that \[\dfrac{d}{dx}\left[ x \right]=1\]
So, we get
\[\dfrac{d}{{dx}}\left[ {{{\tan }^{ - 1}}\sqrt {\dfrac{{1 - \cos x}}{{1 + \cos x}}} } \right] = \dfrac{1}{2}\left( 1 \right)\]
\[\dfrac{d}{{dx}}\left[ {{{\tan }^{ - 1}}\sqrt {\dfrac{{1 - \cos x}}{{1 + \cos x}}} } \right] = \dfrac{1}{2}\]
Hence, the value of \[\dfrac{d}{{dx}}\left[ {{{\tan }^{ - 1}}\sqrt {\dfrac{{1 - \cos x}}{{1 + \cos x}}} } \right]\] is \[1/2\]
Therefore, the correct option is (A).
Additional information: Trigonometric identities are equalities in trigonometry that are valid for any value of the occurring variables at which both halves of the equation are specified. In simple words, the trigonometric identities are equalities using trigonometric functions that remain true for any value of the variables involved, hence defining both halves of the equality. Hence, Sin, cos, and tan are the three primary trigonometric ratios whereas sec, cosec, and cot are the secondary trigonometric ratios. Also, all the trigonometric identities are associated with the right-angled triangle.
Note: Many students generally make mistakes in the simplification part of \[{\tan ^{ - 1}}\sqrt {\dfrac{{1 - \cos x}}{{1 + \cos x}}} \]. They may get wrong while writing the half angle formulae. It makes easy to find the value of \[\dfrac{d}{{dx}}\left[ {{{\tan }^{ - 1}}\sqrt {\dfrac{{1 - \cos x}}{{1 + \cos x}}} } \right]\] by taking the derivative of simplified expression of \[{\tan ^{ - 1}}\sqrt {\dfrac{{1 - \cos x}}{{1 + \cos x}}} \].
Recently Updated Pages
If tan 1y tan 1x + tan 1left frac2x1 x2 right where x frac1sqrt 3 Then the value of y is

Geometry of Complex Numbers – Topics, Reception, Audience and Related Readings

JEE Main 2021 July 25 Shift 1 Question Paper with Answer Key

JEE Main 2021 July 22 Shift 2 Question Paper with Answer Key

JEE Electricity and Magnetism Important Concepts and Tips for Exam Preparation

JEE Energetics Important Concepts and Tips for Exam Preparation

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Displacement-Time Graph and Velocity-Time Graph for JEE

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation

JoSAA JEE Main & Advanced 2025 Counselling: Registration Dates, Documents, Fees, Seat Allotment & Cut‑offs

NIT Cutoff Percentile for 2025

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

JEE Advanced 2025: Dates, Registration, Syllabus, Eligibility Criteria and More

Degree of Dissociation and Its Formula With Solved Example for JEE

Free Radical Substitution Mechanism of Alkanes for JEE Main 2025

JEE Advanced 2025 Notes
