
Find the types of the lines \[15x - 18y + 1 = 0\], \[12x + 10y - 3 = 0\] and \[6x + 66y - 11 = 0\]
A. Parallel
B. Perpendicular
C. Concurrent
D. None of these
Answer
219.9k+ views
Hint First, form a square matrix by using the coefficients of the variables of the given equations of lines. Then calculate the determinant of the square matrix. Check the sign of the determinant to determine the type of the lines.
Formula used:
The lines \[{a_1}x + {b_1}y + {c_1} = 0\], \[{a_2}x + {b_2}y + {c_2} = 0\] and \[{a_3}x + {b_3}y + {c_3} = 0\] are concurrent, if
\[\left| {\begin{array}{*{20}{c}}{{a_1}}&{{b_1}}&{{c_1}}\\{{a_2}}&{{b_2}}&{{c_2}}\\{{a_3}}&{{b_3}}&{{c_3}}\end{array}} \right| = 0\]
Complete step by step solution:
The given equations of lines are \[15x - 18y + 1 = 0\], \[12x + 10y - 3 = 0\] and \[6x + 66y - 11 = 0\].
Let’s formed a matrix using the coefficients of the variables of the given equation.
\[A = \left[ {\begin{array}{*{20}{c}}{15}&{ - 18}&1\\{12}&{10}&{ - 3}\\6&{66}&{ - 11}\end{array}} \right]\]
We know that if the lines are parallel, then the lines have the same coefficients of \[x\] and \[y\] but the constant term is different.
In the above matrix, the coefficients of \[x\] and \[y\] are not equal.
So, the given lines are not parallel.
Hence, the option A is incorrect.
Also, if the lines are perpendicular, then the coefficient of \[y\] term in the first line is equal to the coefficient of \[x\] term in the second line and vice versa with one negative sign.
In the above matrix, the coefficients of \[y\] term in the first line is not equal to the coefficient of \[x\] term in the second line.
So, the given lines are not perpendicular.
Hence, the option B is incorrect.
Now calculate the determinant of the above matrix.
\[\left| A \right| = \left| {\begin{array}{*{20}{c}}{15}&{ - 18}&1\\{12}&{10}&{ - 3}\\6&{66}&{ - 11}\end{array}} \right|\]
\[ \Rightarrow \]\[\left| A \right| = 15\left[ {\left( {10} \right)\left( { - 11} \right) - \left( {66} \right)\left( { - 3} \right)} \right] - \left( { - 18} \right)\left[ {\left( {12} \right)\left( { - 11} \right) - \left( 6 \right)\left( { - 3} \right)} \right] + 1\left[ {\left( {12} \right)\left( {66} \right) - \left( 6 \right)\left( {10} \right)} \right]\]
\[ \Rightarrow \]\[\left| A \right| = 15\left[ { - 110 + 198} \right] + 18\left[ { - 132 + 18} \right] + 1\left[ {792 - 60} \right]\]
\[ \Rightarrow \]\[\left| A \right| = 15\left[ {88} \right] + 18\left[ { - 114} \right] + 1\left[ {732} \right]\]
\[ \Rightarrow \]\[\left| A \right| = 1320 - 2052 + 732\]
\[ \Rightarrow \]\[\left| A \right| = - 732 + 732\]
\[ \Rightarrow \]\[\left| A \right| = 0\]
Therefore, the given lines are concurrent.
Hence the correct option is C.
Note: Students often confused with the formula \[\left| {\begin{array}{*{20}{c}}{{a_1}}&{{b_1}}&{{c_1}}\\{{a_2}}&{{b_2}}&{{c_2}}\\{{a_3}}&{{b_3}}&{{c_3}}\end{array}} \right| = 0\] and \[\left| {\begin{array}{*{20}{c}}{{a_1}}&{{b_1}}&1\\{{a_2}}&{{b_2}}&1\\{{a_3}}&{{b_3}}&1\end{array}} \right| = 0\].
To check whether three lines \[{a_1}x + {b_1}y + {c_1} = 0,{a_2}x + {b_2}y + {c_2} = 0,{a_3}x + {b_3}y + {c_3} = 0\] are concurrent we use the formula \[\left| {\begin{array}{*{20}{c}}{{a_1}}&{{b_1}}&{{c_1}}\\{{a_2}}&{{b_2}}&{{c_2}}\\{{a_3}}&{{b_3}}&{{c_3}}\end{array}} \right| = 0\].
To check whether the points\[\left( {{a_1},{b_1}} \right)\], \[\left( {{a_2},{b_2}} \right)\] and \[\left( {{a_3},{b_3}} \right)\] are collinear, we use \[\left| {\begin{array}{*{20}{c}}{{a_1}}&{{b_1}}&1\\{{a_2}}&{{b_2}}&1\\{{a_3}}&{{b_3}}&1\end{array}} \right| = 0\].
Formula used:
The lines \[{a_1}x + {b_1}y + {c_1} = 0\], \[{a_2}x + {b_2}y + {c_2} = 0\] and \[{a_3}x + {b_3}y + {c_3} = 0\] are concurrent, if
\[\left| {\begin{array}{*{20}{c}}{{a_1}}&{{b_1}}&{{c_1}}\\{{a_2}}&{{b_2}}&{{c_2}}\\{{a_3}}&{{b_3}}&{{c_3}}\end{array}} \right| = 0\]
Complete step by step solution:
The given equations of lines are \[15x - 18y + 1 = 0\], \[12x + 10y - 3 = 0\] and \[6x + 66y - 11 = 0\].
Let’s formed a matrix using the coefficients of the variables of the given equation.
\[A = \left[ {\begin{array}{*{20}{c}}{15}&{ - 18}&1\\{12}&{10}&{ - 3}\\6&{66}&{ - 11}\end{array}} \right]\]
We know that if the lines are parallel, then the lines have the same coefficients of \[x\] and \[y\] but the constant term is different.
In the above matrix, the coefficients of \[x\] and \[y\] are not equal.
So, the given lines are not parallel.
Hence, the option A is incorrect.
Also, if the lines are perpendicular, then the coefficient of \[y\] term in the first line is equal to the coefficient of \[x\] term in the second line and vice versa with one negative sign.
In the above matrix, the coefficients of \[y\] term in the first line is not equal to the coefficient of \[x\] term in the second line.
So, the given lines are not perpendicular.
Hence, the option B is incorrect.
Now calculate the determinant of the above matrix.
\[\left| A \right| = \left| {\begin{array}{*{20}{c}}{15}&{ - 18}&1\\{12}&{10}&{ - 3}\\6&{66}&{ - 11}\end{array}} \right|\]
\[ \Rightarrow \]\[\left| A \right| = 15\left[ {\left( {10} \right)\left( { - 11} \right) - \left( {66} \right)\left( { - 3} \right)} \right] - \left( { - 18} \right)\left[ {\left( {12} \right)\left( { - 11} \right) - \left( 6 \right)\left( { - 3} \right)} \right] + 1\left[ {\left( {12} \right)\left( {66} \right) - \left( 6 \right)\left( {10} \right)} \right]\]
\[ \Rightarrow \]\[\left| A \right| = 15\left[ { - 110 + 198} \right] + 18\left[ { - 132 + 18} \right] + 1\left[ {792 - 60} \right]\]
\[ \Rightarrow \]\[\left| A \right| = 15\left[ {88} \right] + 18\left[ { - 114} \right] + 1\left[ {732} \right]\]
\[ \Rightarrow \]\[\left| A \right| = 1320 - 2052 + 732\]
\[ \Rightarrow \]\[\left| A \right| = - 732 + 732\]
\[ \Rightarrow \]\[\left| A \right| = 0\]
Therefore, the given lines are concurrent.
Hence the correct option is C.
Note: Students often confused with the formula \[\left| {\begin{array}{*{20}{c}}{{a_1}}&{{b_1}}&{{c_1}}\\{{a_2}}&{{b_2}}&{{c_2}}\\{{a_3}}&{{b_3}}&{{c_3}}\end{array}} \right| = 0\] and \[\left| {\begin{array}{*{20}{c}}{{a_1}}&{{b_1}}&1\\{{a_2}}&{{b_2}}&1\\{{a_3}}&{{b_3}}&1\end{array}} \right| = 0\].
To check whether three lines \[{a_1}x + {b_1}y + {c_1} = 0,{a_2}x + {b_2}y + {c_2} = 0,{a_3}x + {b_3}y + {c_3} = 0\] are concurrent we use the formula \[\left| {\begin{array}{*{20}{c}}{{a_1}}&{{b_1}}&{{c_1}}\\{{a_2}}&{{b_2}}&{{c_2}}\\{{a_3}}&{{b_3}}&{{c_3}}\end{array}} \right| = 0\].
To check whether the points\[\left( {{a_1},{b_1}} \right)\], \[\left( {{a_2},{b_2}} \right)\] and \[\left( {{a_3},{b_3}} \right)\] are collinear, we use \[\left| {\begin{array}{*{20}{c}}{{a_1}}&{{b_1}}&1\\{{a_2}}&{{b_2}}&1\\{{a_3}}&{{b_3}}&1\end{array}} \right| = 0\].
Recently Updated Pages
Geometry of Complex Numbers Explained

Electricity and Magnetism Explained: Key Concepts & Applications

JEE Energetics Important Concepts and Tips for Exam Preparation

JEE Isolation, Preparation and Properties of Non-metals Important Concepts and Tips for Exam Preparation

JEE Main 2021 July 25 Shift 1 Question Paper with Answer Key

JEE Main 2021 July 22 Shift 2 Question Paper with Answer Key

Trending doubts
JEE Main 2026: Application Form Open, Exam Dates, Syllabus, Eligibility & Question Papers

Derivation of Equation of Trajectory Explained for Students

Hybridisation in Chemistry – Concept, Types & Applications

Understanding the Angle of Deviation in a Prism

Understanding Atomic Structure for Beginners

How to Convert a Galvanometer into an Ammeter or Voltmeter

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

NCERT Solutions for Class 11 Maths Chapter 10 Conic Sections

NCERT Solutions for Class 11 Maths Chapter 9 Straight Lines

NCERT Solutions For Class 11 Maths Chapter 8 Sequences And Series

NCERT Solutions For Class 11 Maths Chapter 12 Limits And Derivatives

Understanding Centrifugal Force in Physics

