
Find the sum of the series $\dfrac{2}{{1!}} + \dfrac{{(2 + 4)}}{{2!}} + \dfrac{{(2 + 4 + 6)}}{{3!}} + ....\infty $.
A.$e$
B. 2e
C. 3e
D. None of these
Answer
216.3k+ views
Hint: Write 2 as 1.2, (2+4) that is 6 as 3.2, (2+4+6) that is 12 as 3.4, (2+4+6+8) that is 20 as 4.5 in the numerators of the given series. Then simplify the series. Now, write the series of ${e^x}$, then multiply both sides of the equation ${e^x} = 1 + \dfrac{x}{{1!}} + \dfrac{{{x^2}}}{{2!}} + \dfrac{{{x^3}}}{{3!}} + ....$ by ${x^2}$. Differentiate both sides of the result with respect to x. At last substitute 1 for x in the differentiated result to obtain the required answer.
Formula Used:
$n! = 1.2.3....n$
$n! = n(n - 1)!$
${e^x} = 1 + \dfrac{x}{{1!}} + \dfrac{{{x^2}}}{{2!}} + \dfrac{{{x^3}}}{{3!}} + ....$
$\dfrac{d}{{dx}}({x^n}) = n{x^{n - 1}}$
$\dfrac{d}{{dx}}(uv) = u\dfrac{{dv}}{{dx}} + v\dfrac{{du}}{{dx}}$
Complete step by step solution:
The given series can be written as,
$\dfrac{2}{{1!}} + \dfrac{6}{{2!}} + \dfrac{{12}}{{3!}} + \dfrac{{20}}{{4!}} + ....\infty $
$\dfrac{{1.2}}{{1!}} + \dfrac{{2.3}}{{2!}} + \dfrac{{3.4}}{{3!}} + \dfrac{{4.5}}{{4!}} + ....\infty $
$\dfrac{{1.2}}{{1!}} + \dfrac{{2.3}}{{2.1!}} + \dfrac{{3.4}}{{3.2!}} + \dfrac{{4.5}}{{4.3!}} + ....\infty $
$2 + \dfrac{3}{{1!}} + \dfrac{4}{{2!}} + \dfrac{5}{{3!}} + ....\infty $
Now,
${e^x} = 1 + \dfrac{x}{{1!}} + \dfrac{{{x^2}}}{{2!}} + \dfrac{{{x^3}}}{{3!}} + ....$
Multiply both sides of the equation ${e^x} = 1 + \dfrac{x}{{1!}} + \dfrac{{{x^2}}}{{2!}} + \dfrac{{{x^3}}}{{3!}} + ....$ by ${x^2}$ .
${x^2}{e^x} = {x^2} + \dfrac{{{x^3}}}{{1!}} + \dfrac{{{x^4}}}{{2!}} + \dfrac{{{x^5}}}{{3!}} + ....$
Differentiate both sides of the equation ${x^2}{e^x} = {x^2} + \dfrac{{{x^3}}}{{1!}} + \dfrac{{{x^4}}}{{2!}} + \dfrac{{{x^5}}}{{3!}} + ....$ with respect to x.
${x^2}{e^x} + {e^x}.2x = 2x + \dfrac{{3{x^2}}}{{1!}} + \dfrac{{4{x^3}}}{{2!}} + \dfrac{{5{x^4}}}{{3!}} + .....$
Substitute 1 for x in both sides of the equation ${x^2}{e^x} + {e^x}.2x = 2x + \dfrac{{3{x^2}}}{{1!}} + \dfrac{{4{x^3}}}{{2!}} + \dfrac{{5{x^4}}}{{3!}} + .....$
We get,
${1^2}{e^1} + {e^1}.2.1 = 2.1 + \dfrac{{{{3.1}^2}}}{{1!}} + \dfrac{{{{4.1}^3}}}{{2!}} + \dfrac{{{{5.1}^4}}}{{3!}} + .....$
$2 + \dfrac{3}{{1!}} + \dfrac{4}{{2!}} + \dfrac{5}{{3!}} + .... = 2e + e = 3e$
Option ‘C’ is correct
Note: To solve this type of question one needs to have the knowledge of the expansion of ${e^x}$, otherwise it will be difficult to solve this type of questions.
Formula Used:
$n! = 1.2.3....n$
$n! = n(n - 1)!$
${e^x} = 1 + \dfrac{x}{{1!}} + \dfrac{{{x^2}}}{{2!}} + \dfrac{{{x^3}}}{{3!}} + ....$
$\dfrac{d}{{dx}}({x^n}) = n{x^{n - 1}}$
$\dfrac{d}{{dx}}(uv) = u\dfrac{{dv}}{{dx}} + v\dfrac{{du}}{{dx}}$
Complete step by step solution:
The given series can be written as,
$\dfrac{2}{{1!}} + \dfrac{6}{{2!}} + \dfrac{{12}}{{3!}} + \dfrac{{20}}{{4!}} + ....\infty $
$\dfrac{{1.2}}{{1!}} + \dfrac{{2.3}}{{2!}} + \dfrac{{3.4}}{{3!}} + \dfrac{{4.5}}{{4!}} + ....\infty $
$\dfrac{{1.2}}{{1!}} + \dfrac{{2.3}}{{2.1!}} + \dfrac{{3.4}}{{3.2!}} + \dfrac{{4.5}}{{4.3!}} + ....\infty $
$2 + \dfrac{3}{{1!}} + \dfrac{4}{{2!}} + \dfrac{5}{{3!}} + ....\infty $
Now,
${e^x} = 1 + \dfrac{x}{{1!}} + \dfrac{{{x^2}}}{{2!}} + \dfrac{{{x^3}}}{{3!}} + ....$
Multiply both sides of the equation ${e^x} = 1 + \dfrac{x}{{1!}} + \dfrac{{{x^2}}}{{2!}} + \dfrac{{{x^3}}}{{3!}} + ....$ by ${x^2}$ .
${x^2}{e^x} = {x^2} + \dfrac{{{x^3}}}{{1!}} + \dfrac{{{x^4}}}{{2!}} + \dfrac{{{x^5}}}{{3!}} + ....$
Differentiate both sides of the equation ${x^2}{e^x} = {x^2} + \dfrac{{{x^3}}}{{1!}} + \dfrac{{{x^4}}}{{2!}} + \dfrac{{{x^5}}}{{3!}} + ....$ with respect to x.
${x^2}{e^x} + {e^x}.2x = 2x + \dfrac{{3{x^2}}}{{1!}} + \dfrac{{4{x^3}}}{{2!}} + \dfrac{{5{x^4}}}{{3!}} + .....$
Substitute 1 for x in both sides of the equation ${x^2}{e^x} + {e^x}.2x = 2x + \dfrac{{3{x^2}}}{{1!}} + \dfrac{{4{x^3}}}{{2!}} + \dfrac{{5{x^4}}}{{3!}} + .....$
We get,
${1^2}{e^1} + {e^1}.2.1 = 2.1 + \dfrac{{{{3.1}^2}}}{{1!}} + \dfrac{{{{4.1}^3}}}{{2!}} + \dfrac{{{{5.1}^4}}}{{3!}} + .....$
$2 + \dfrac{3}{{1!}} + \dfrac{4}{{2!}} + \dfrac{5}{{3!}} + .... = 2e + e = 3e$
Option ‘C’ is correct
Note: To solve this type of question one needs to have the knowledge of the expansion of ${e^x}$, otherwise it will be difficult to solve this type of questions.
Recently Updated Pages
JEE Atomic Structure and Chemical Bonding important Concepts and Tips

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

Electricity and Magnetism Explained: Key Concepts & Applications

Chemical Properties of Hydrogen - Important Concepts for JEE Exam Preparation

JEE Energetics Important Concepts and Tips for Exam Preparation

JEE Isolation, Preparation and Properties of Non-metals Important Concepts and Tips for Exam Preparation

Trending doubts
JEE Main 2026: Application Form Open, Exam Dates, Syllabus, Eligibility & Question Papers

Derivation of Equation of Trajectory Explained for Students

Hybridisation in Chemistry – Concept, Types & Applications

Understanding the Angle of Deviation in a Prism

Understanding Collisions: Types and Examples for Students

How to Convert a Galvanometer into an Ammeter or Voltmeter

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

NCERT Solutions for Class 11 Maths Chapter 10 Conic Sections

NCERT Solutions for Class 11 Maths Chapter 9 Straight Lines

NCERT Solutions For Class 11 Maths Chapter 8 Sequences And Series

Ideal and Non-Ideal Solutions Explained for Class 12 Chemistry

Degree of Dissociation: Meaning, Formula, Calculation & Uses

