
Find the sum of the series \[\dfrac{{{1^3}}}{1}{\text{ }} + {\text{ }}\dfrac{{\left( {{1^3} + {2^3}} \right)}}{2}{\text{ }} + {\text{ }}\dfrac{{\left( {{1^3} + {2^3} + {3^3}} \right)}}{3}{\text{ }} + ...\] up to n terms is equal to
A. \[\dfrac{{n\left( {n + 1} \right)\left( {n + 2} \right)\left( {5n + 3} \right)}}{{48}}\]
B. \[\dfrac{{n\left( {n + 1} \right)\left( {n + 2} \right)\left( {n + 3} \right)}}{{24}}\]
C. \[\dfrac{{n\left( {n + 1} \right)\left( {n + 2} \right)\left( {7n + 1} \right)}}{{48}}\]
D. \[\dfrac{{n\left( {n + 1} \right)\left( {n + 2} \right)\left( {3n + 5} \right)}}{{48}}\]
Answer
164.7k+ views
Hint: To solve this question, we need to find the \[{n_{th}}\] term of the numerator and the denominator separately then find the sum of the series by using the sum of squares on \[n\] natural numbers, the sum of cubes of \[n\] natural numbers and the sum of \[n\] numbers.
Formula Used:
1. \[{T_n} = a + \left( {n - 1} \right)d\]
where \[a\] is the first term, \[d\] is a common difference and \[{T_n}\] is \[{n_{th}}\] term of series
2. \[{S_n} = \sum {{T_n}} \]
where \[{S_n}\] is the sum of the series and \[{T_n}\] is the \[{n_{th}}\] of the series
3. \[\sum {{n^3} = } \dfrac{{n\left( {n + 1} \right)\left( {2n + 1} \right)}}{6}\]
4. \[\sum {{n^2} = } {\left( {\dfrac{{n\left( {n + 1} \right)}}{2}} \right)^2}\]
5. \[\sum {n = } \dfrac{{n\left( {n + 1} \right)}}{2}\]
Complete step-by-step solution:
Given that \[\dfrac{{{1^3}}}{1}{\text{ }} + {\text{ }}\dfrac{{\left( {{1^3} + {2^3}} \right)}}{2}{\text{ }} + {\text{ }}\dfrac{{\left( {{1^3} + {2^3} + {3^3}} \right)}}{3}{\text{ }} + ...upto{\text{ }}n{\text{ }}terms{\text{ }}\]
Now solve the \[{n_{th}}\] term of the numerator and the denominator separately:
Now the numerator series is \[{1^3} + {2^3} + {3^3}... + {n^3}\]
Now, the \[{n_{th}}\] term of the series by formula \[{T_n} = a + \left( {n - 1} \right)d\] is
\[
{T_n} = {1^3} + {2^3} + ..... + { n^3} \\
= \sum {{n^3}}
\]
We know that sum of cubes of n natural number is \[{\left( {\dfrac{{n\left( {n + 1} \right)}}{2}} \right)^2}\]
Therefore,
\[
{T_n} = {\left( {\dfrac{{n\left( {n + 1} \right)}}{2}} \right)^2} \\
= \dfrac{{{{\left[ {n\left( {n + 1} \right)} \right]}^2}}}{{{2^2}}} \\
= \dfrac{{{{\left[ {n\left( {n + 1} \right)} \right]}^2}}}{4}...\left( 1 \right)
\]
Now the denominator series is \[1,2,3,...n\]
Now, the \[{n_{th}}\] term of the series by formula \[{T_n} = a + \left( {n - 1} \right)d\] is
\[
{T_n} = a + \left( {n - 1} \right)d \\
= 1 + \left( {n - 1} \right)1 \\
= 1 + n - 1 \\
= n...\left( 2 \right)
\]
Therefore, the \[{n_{th}}\] of the series \[\dfrac{{{1^3}}}{1}{\text{ }} + {\text{ }}\dfrac{{\left( {{1^3} + {2^3}} \right)}}{2}{\text{ }} + {\text{ }}\dfrac{{\left( {{1^3} + {2^3} + {3^3}} \right)}}{3}{\text{ }} + ...upto{\text{ }}n{\text{ }}terms{\text{ }}\] from equation (1) and (2) is
\[
{T_n} = \dfrac{{\dfrac{{{{\left[ {n\left( {n + 1} \right)} \right]}^2}}}{4}}}{n} \\
= \dfrac{{{{\left[ {n\left( {n + 1} \right)} \right]}^2}}}{{4n}} \\
= \dfrac{{{n^2}{{\left( {n + 1} \right)}^2}}}{{4n}} \\
= \dfrac{{n{{\left( {n + 1} \right)}^2}}}{4}
\]
Now, the sum of series is given by \[{S_n} = \sum {{T_n}} \]
\[
{S_n} = \sum {\dfrac{{n{{\left( {n + 1} \right)}^2}}}{4}} \\
= \sum {\dfrac{{n\left( {{n^2} + 1 + 2n} \right)}}{4}} \\
= \sum {\dfrac{{{n^3} + n + 2{n^2}}}{4}} \\
= \dfrac{1}{4}\sum {{n^3} + n + 2{n^2}}
\]
Further solving,
\[{S_n} = \dfrac{1}{4}\left[ {\sum {{n^3} + \sum {2{n^2}} } + \sum n } \right]\]
We know that \[\sum {{n^3}} = \dfrac{{n\left( {n + 1} \right)\left( {2n + 1} \right)}}{6}\], \[\sum {{n^2}} = {\left( {\dfrac{{n\left( {n + 1} \right)}}{2}} \right)^2}\]and \[\sum n = \dfrac{{n\left( {n + 1} \right)}}{2}\]
Now by applying these formulas, we get
\[
{S_n} = \dfrac{1}{4}\left[ {{{\left( {\dfrac{{n\left( {n + 1} \right)}}{2}} \right)}^2} + 2\left( {\dfrac{{n\left( {n + 1} \right)\left( {2n + 1} \right)}}{6}} \right) + \dfrac{{n\left( {n + 1} \right)}}{2}} \right] \\
= \dfrac{1}{4}\left[ {\dfrac{{{n^2}{{\left( {n + 1} \right)}^2}}}{{{2^2}}} + \dfrac{{n\left( {n + 1} \right)\left( {2n + 1} \right)}}{3} + \dfrac{{n\left( {n + 1} \right)}}{2}} \right] \\
= \dfrac{1}{4}\left[ {n\left( {n + 1} \right)\left[ {\dfrac{{n\left( {n + 1} \right)}}{4} + \dfrac{{2n + 1}}{3} + \dfrac{1}{2}} \right]} \right] \\
= \dfrac{{n\left( {n + 1} \right)}}{4}\left[ {\dfrac{{3\left( {n\left( {n + 1} \right)} \right) + 4\left( {2n + 1} \right) + 6}}{{12}}} \right]
\]
Further solving,
\[
{S_n} = \dfrac{{n\left( {n + 1} \right)}}{4}\left[ {\dfrac{{3\left( {{n^2} + n} \right) + 8n + 4 + 6}}{{12}}} \right] \\
= \dfrac{{n\left( {n + 1} \right)}}{4}\left[ {\dfrac{{3{n^2} + 3n + 8n + 10}}{{12}}} \right] \\
= \dfrac{{n\left( {n + 1} \right)}}{4}\left[ {\dfrac{{3{n^2} + 11n + 10}}{{12}}} \right] \\
= \dfrac{{n\left( {n + 1} \right)}}{4}\left[ {\dfrac{{3{n^2} + 6n + 5n + 10}}{{12}}} \right]
\]
Furthermore solving,
\[
{S_n} = \dfrac{{n\left( {n + 1} \right)}}{4}\left[ {\dfrac{{3n\left( {n + 2} \right) + 5\left( {n + 2} \right)}}{{12}}} \right] \\
= \dfrac{{n\left( {n + 1} \right)}}{4}\left[ {\dfrac{{\left( {3n + 5} \right)\left( {n + 2} \right)}}{{12}}} \right] \\
= \dfrac{{n\left( {n + 1} \right)\left( {3n + 5} \right)\left( {n + 2} \right)}}{{4 \times 12}} \\
= \dfrac{{n\left( {n + 1} \right)\left( {3n + 5} \right)\left( {n + 2} \right)}}{{48}}
\]
Hence, option (D) is correct
Note: Using the series formula, we calculated the sum of the given series. Students must be careful while calculating the sum of series as he/she could be mistakes while calculating the series and apply the formulas used in the above solution correctly to get the required result.
Formula Used:
1. \[{T_n} = a + \left( {n - 1} \right)d\]
where \[a\] is the first term, \[d\] is a common difference and \[{T_n}\] is \[{n_{th}}\] term of series
2. \[{S_n} = \sum {{T_n}} \]
where \[{S_n}\] is the sum of the series and \[{T_n}\] is the \[{n_{th}}\] of the series
3. \[\sum {{n^3} = } \dfrac{{n\left( {n + 1} \right)\left( {2n + 1} \right)}}{6}\]
4. \[\sum {{n^2} = } {\left( {\dfrac{{n\left( {n + 1} \right)}}{2}} \right)^2}\]
5. \[\sum {n = } \dfrac{{n\left( {n + 1} \right)}}{2}\]
Complete step-by-step solution:
Given that \[\dfrac{{{1^3}}}{1}{\text{ }} + {\text{ }}\dfrac{{\left( {{1^3} + {2^3}} \right)}}{2}{\text{ }} + {\text{ }}\dfrac{{\left( {{1^3} + {2^3} + {3^3}} \right)}}{3}{\text{ }} + ...upto{\text{ }}n{\text{ }}terms{\text{ }}\]
Now solve the \[{n_{th}}\] term of the numerator and the denominator separately:
Now the numerator series is \[{1^3} + {2^3} + {3^3}... + {n^3}\]
Now, the \[{n_{th}}\] term of the series by formula \[{T_n} = a + \left( {n - 1} \right)d\] is
\[
{T_n} = {1^3} + {2^3} + ..... + { n^3} \\
= \sum {{n^3}}
\]
We know that sum of cubes of n natural number is \[{\left( {\dfrac{{n\left( {n + 1} \right)}}{2}} \right)^2}\]
Therefore,
\[
{T_n} = {\left( {\dfrac{{n\left( {n + 1} \right)}}{2}} \right)^2} \\
= \dfrac{{{{\left[ {n\left( {n + 1} \right)} \right]}^2}}}{{{2^2}}} \\
= \dfrac{{{{\left[ {n\left( {n + 1} \right)} \right]}^2}}}{4}...\left( 1 \right)
\]
Now the denominator series is \[1,2,3,...n\]
Now, the \[{n_{th}}\] term of the series by formula \[{T_n} = a + \left( {n - 1} \right)d\] is
\[
{T_n} = a + \left( {n - 1} \right)d \\
= 1 + \left( {n - 1} \right)1 \\
= 1 + n - 1 \\
= n...\left( 2 \right)
\]
Therefore, the \[{n_{th}}\] of the series \[\dfrac{{{1^3}}}{1}{\text{ }} + {\text{ }}\dfrac{{\left( {{1^3} + {2^3}} \right)}}{2}{\text{ }} + {\text{ }}\dfrac{{\left( {{1^3} + {2^3} + {3^3}} \right)}}{3}{\text{ }} + ...upto{\text{ }}n{\text{ }}terms{\text{ }}\] from equation (1) and (2) is
\[
{T_n} = \dfrac{{\dfrac{{{{\left[ {n\left( {n + 1} \right)} \right]}^2}}}{4}}}{n} \\
= \dfrac{{{{\left[ {n\left( {n + 1} \right)} \right]}^2}}}{{4n}} \\
= \dfrac{{{n^2}{{\left( {n + 1} \right)}^2}}}{{4n}} \\
= \dfrac{{n{{\left( {n + 1} \right)}^2}}}{4}
\]
Now, the sum of series is given by \[{S_n} = \sum {{T_n}} \]
\[
{S_n} = \sum {\dfrac{{n{{\left( {n + 1} \right)}^2}}}{4}} \\
= \sum {\dfrac{{n\left( {{n^2} + 1 + 2n} \right)}}{4}} \\
= \sum {\dfrac{{{n^3} + n + 2{n^2}}}{4}} \\
= \dfrac{1}{4}\sum {{n^3} + n + 2{n^2}}
\]
Further solving,
\[{S_n} = \dfrac{1}{4}\left[ {\sum {{n^3} + \sum {2{n^2}} } + \sum n } \right]\]
We know that \[\sum {{n^3}} = \dfrac{{n\left( {n + 1} \right)\left( {2n + 1} \right)}}{6}\], \[\sum {{n^2}} = {\left( {\dfrac{{n\left( {n + 1} \right)}}{2}} \right)^2}\]and \[\sum n = \dfrac{{n\left( {n + 1} \right)}}{2}\]
Now by applying these formulas, we get
\[
{S_n} = \dfrac{1}{4}\left[ {{{\left( {\dfrac{{n\left( {n + 1} \right)}}{2}} \right)}^2} + 2\left( {\dfrac{{n\left( {n + 1} \right)\left( {2n + 1} \right)}}{6}} \right) + \dfrac{{n\left( {n + 1} \right)}}{2}} \right] \\
= \dfrac{1}{4}\left[ {\dfrac{{{n^2}{{\left( {n + 1} \right)}^2}}}{{{2^2}}} + \dfrac{{n\left( {n + 1} \right)\left( {2n + 1} \right)}}{3} + \dfrac{{n\left( {n + 1} \right)}}{2}} \right] \\
= \dfrac{1}{4}\left[ {n\left( {n + 1} \right)\left[ {\dfrac{{n\left( {n + 1} \right)}}{4} + \dfrac{{2n + 1}}{3} + \dfrac{1}{2}} \right]} \right] \\
= \dfrac{{n\left( {n + 1} \right)}}{4}\left[ {\dfrac{{3\left( {n\left( {n + 1} \right)} \right) + 4\left( {2n + 1} \right) + 6}}{{12}}} \right]
\]
Further solving,
\[
{S_n} = \dfrac{{n\left( {n + 1} \right)}}{4}\left[ {\dfrac{{3\left( {{n^2} + n} \right) + 8n + 4 + 6}}{{12}}} \right] \\
= \dfrac{{n\left( {n + 1} \right)}}{4}\left[ {\dfrac{{3{n^2} + 3n + 8n + 10}}{{12}}} \right] \\
= \dfrac{{n\left( {n + 1} \right)}}{4}\left[ {\dfrac{{3{n^2} + 11n + 10}}{{12}}} \right] \\
= \dfrac{{n\left( {n + 1} \right)}}{4}\left[ {\dfrac{{3{n^2} + 6n + 5n + 10}}{{12}}} \right]
\]
Furthermore solving,
\[
{S_n} = \dfrac{{n\left( {n + 1} \right)}}{4}\left[ {\dfrac{{3n\left( {n + 2} \right) + 5\left( {n + 2} \right)}}{{12}}} \right] \\
= \dfrac{{n\left( {n + 1} \right)}}{4}\left[ {\dfrac{{\left( {3n + 5} \right)\left( {n + 2} \right)}}{{12}}} \right] \\
= \dfrac{{n\left( {n + 1} \right)\left( {3n + 5} \right)\left( {n + 2} \right)}}{{4 \times 12}} \\
= \dfrac{{n\left( {n + 1} \right)\left( {3n + 5} \right)\left( {n + 2} \right)}}{{48}}
\]
Hence, option (D) is correct
Note: Using the series formula, we calculated the sum of the given series. Students must be careful while calculating the sum of series as he/she could be mistakes while calculating the series and apply the formulas used in the above solution correctly to get the required result.
Recently Updated Pages
Geometry of Complex Numbers – Topics, Reception, Audience and Related Readings

JEE Main 2021 July 25 Shift 1 Question Paper with Answer Key

JEE Main 2021 July 22 Shift 2 Question Paper with Answer Key

JEE Atomic Structure and Chemical Bonding important Concepts and Tips

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

JEE Electricity and Magnetism Important Concepts and Tips for Exam Preparation

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

Atomic Structure - Electrons, Protons, Neutrons and Atomic Models

Displacement-Time Graph and Velocity-Time Graph for JEE

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Learn About Angle Of Deviation In Prism: JEE Main Physics 2025

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

NCERT Solutions for Class 11 Maths Chapter 4 Complex Numbers and Quadratic Equations

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

Degree of Dissociation and Its Formula With Solved Example for JEE

Instantaneous Velocity - Formula based Examples for JEE

NCERT Solutions for Class 11 Maths In Hindi Chapter 1 Sets
