
Find the sum of the series \[\dfrac{{{1^3}}}{1}{\text{ }} + {\text{ }}\dfrac{{\left( {{1^3} + {2^3}} \right)}}{2}{\text{ }} + {\text{ }}\dfrac{{\left( {{1^3} + {2^3} + {3^3}} \right)}}{3}{\text{ }} + ...\] up to n terms is equal to
A. \[\dfrac{{n\left( {n + 1} \right)\left( {n + 2} \right)\left( {5n + 3} \right)}}{{48}}\]
B. \[\dfrac{{n\left( {n + 1} \right)\left( {n + 2} \right)\left( {n + 3} \right)}}{{24}}\]
C. \[\dfrac{{n\left( {n + 1} \right)\left( {n + 2} \right)\left( {7n + 1} \right)}}{{48}}\]
D. \[\dfrac{{n\left( {n + 1} \right)\left( {n + 2} \right)\left( {3n + 5} \right)}}{{48}}\]
Answer
216.3k+ views
Hint: To solve this question, we need to find the \[{n_{th}}\] term of the numerator and the denominator separately then find the sum of the series by using the sum of squares on \[n\] natural numbers, the sum of cubes of \[n\] natural numbers and the sum of \[n\] numbers.
Formula Used:
1. \[{T_n} = a + \left( {n - 1} \right)d\]
where \[a\] is the first term, \[d\] is a common difference and \[{T_n}\] is \[{n_{th}}\] term of series
2. \[{S_n} = \sum {{T_n}} \]
where \[{S_n}\] is the sum of the series and \[{T_n}\] is the \[{n_{th}}\] of the series
3. \[\sum {{n^3} = } \dfrac{{n\left( {n + 1} \right)\left( {2n + 1} \right)}}{6}\]
4. \[\sum {{n^2} = } {\left( {\dfrac{{n\left( {n + 1} \right)}}{2}} \right)^2}\]
5. \[\sum {n = } \dfrac{{n\left( {n + 1} \right)}}{2}\]
Complete step-by-step solution:
Given that \[\dfrac{{{1^3}}}{1}{\text{ }} + {\text{ }}\dfrac{{\left( {{1^3} + {2^3}} \right)}}{2}{\text{ }} + {\text{ }}\dfrac{{\left( {{1^3} + {2^3} + {3^3}} \right)}}{3}{\text{ }} + ...upto{\text{ }}n{\text{ }}terms{\text{ }}\]
Now solve the \[{n_{th}}\] term of the numerator and the denominator separately:
Now the numerator series is \[{1^3} + {2^3} + {3^3}... + {n^3}\]
Now, the \[{n_{th}}\] term of the series by formula \[{T_n} = a + \left( {n - 1} \right)d\] is
\[
{T_n} = {1^3} + {2^3} + ..... + { n^3} \\
= \sum {{n^3}}
\]
We know that sum of cubes of n natural number is \[{\left( {\dfrac{{n\left( {n + 1} \right)}}{2}} \right)^2}\]
Therefore,
\[
{T_n} = {\left( {\dfrac{{n\left( {n + 1} \right)}}{2}} \right)^2} \\
= \dfrac{{{{\left[ {n\left( {n + 1} \right)} \right]}^2}}}{{{2^2}}} \\
= \dfrac{{{{\left[ {n\left( {n + 1} \right)} \right]}^2}}}{4}...\left( 1 \right)
\]
Now the denominator series is \[1,2,3,...n\]
Now, the \[{n_{th}}\] term of the series by formula \[{T_n} = a + \left( {n - 1} \right)d\] is
\[
{T_n} = a + \left( {n - 1} \right)d \\
= 1 + \left( {n - 1} \right)1 \\
= 1 + n - 1 \\
= n...\left( 2 \right)
\]
Therefore, the \[{n_{th}}\] of the series \[\dfrac{{{1^3}}}{1}{\text{ }} + {\text{ }}\dfrac{{\left( {{1^3} + {2^3}} \right)}}{2}{\text{ }} + {\text{ }}\dfrac{{\left( {{1^3} + {2^3} + {3^3}} \right)}}{3}{\text{ }} + ...upto{\text{ }}n{\text{ }}terms{\text{ }}\] from equation (1) and (2) is
\[
{T_n} = \dfrac{{\dfrac{{{{\left[ {n\left( {n + 1} \right)} \right]}^2}}}{4}}}{n} \\
= \dfrac{{{{\left[ {n\left( {n + 1} \right)} \right]}^2}}}{{4n}} \\
= \dfrac{{{n^2}{{\left( {n + 1} \right)}^2}}}{{4n}} \\
= \dfrac{{n{{\left( {n + 1} \right)}^2}}}{4}
\]
Now, the sum of series is given by \[{S_n} = \sum {{T_n}} \]
\[
{S_n} = \sum {\dfrac{{n{{\left( {n + 1} \right)}^2}}}{4}} \\
= \sum {\dfrac{{n\left( {{n^2} + 1 + 2n} \right)}}{4}} \\
= \sum {\dfrac{{{n^3} + n + 2{n^2}}}{4}} \\
= \dfrac{1}{4}\sum {{n^3} + n + 2{n^2}}
\]
Further solving,
\[{S_n} = \dfrac{1}{4}\left[ {\sum {{n^3} + \sum {2{n^2}} } + \sum n } \right]\]
We know that \[\sum {{n^3}} = \dfrac{{n\left( {n + 1} \right)\left( {2n + 1} \right)}}{6}\], \[\sum {{n^2}} = {\left( {\dfrac{{n\left( {n + 1} \right)}}{2}} \right)^2}\]and \[\sum n = \dfrac{{n\left( {n + 1} \right)}}{2}\]
Now by applying these formulas, we get
\[
{S_n} = \dfrac{1}{4}\left[ {{{\left( {\dfrac{{n\left( {n + 1} \right)}}{2}} \right)}^2} + 2\left( {\dfrac{{n\left( {n + 1} \right)\left( {2n + 1} \right)}}{6}} \right) + \dfrac{{n\left( {n + 1} \right)}}{2}} \right] \\
= \dfrac{1}{4}\left[ {\dfrac{{{n^2}{{\left( {n + 1} \right)}^2}}}{{{2^2}}} + \dfrac{{n\left( {n + 1} \right)\left( {2n + 1} \right)}}{3} + \dfrac{{n\left( {n + 1} \right)}}{2}} \right] \\
= \dfrac{1}{4}\left[ {n\left( {n + 1} \right)\left[ {\dfrac{{n\left( {n + 1} \right)}}{4} + \dfrac{{2n + 1}}{3} + \dfrac{1}{2}} \right]} \right] \\
= \dfrac{{n\left( {n + 1} \right)}}{4}\left[ {\dfrac{{3\left( {n\left( {n + 1} \right)} \right) + 4\left( {2n + 1} \right) + 6}}{{12}}} \right]
\]
Further solving,
\[
{S_n} = \dfrac{{n\left( {n + 1} \right)}}{4}\left[ {\dfrac{{3\left( {{n^2} + n} \right) + 8n + 4 + 6}}{{12}}} \right] \\
= \dfrac{{n\left( {n + 1} \right)}}{4}\left[ {\dfrac{{3{n^2} + 3n + 8n + 10}}{{12}}} \right] \\
= \dfrac{{n\left( {n + 1} \right)}}{4}\left[ {\dfrac{{3{n^2} + 11n + 10}}{{12}}} \right] \\
= \dfrac{{n\left( {n + 1} \right)}}{4}\left[ {\dfrac{{3{n^2} + 6n + 5n + 10}}{{12}}} \right]
\]
Furthermore solving,
\[
{S_n} = \dfrac{{n\left( {n + 1} \right)}}{4}\left[ {\dfrac{{3n\left( {n + 2} \right) + 5\left( {n + 2} \right)}}{{12}}} \right] \\
= \dfrac{{n\left( {n + 1} \right)}}{4}\left[ {\dfrac{{\left( {3n + 5} \right)\left( {n + 2} \right)}}{{12}}} \right] \\
= \dfrac{{n\left( {n + 1} \right)\left( {3n + 5} \right)\left( {n + 2} \right)}}{{4 \times 12}} \\
= \dfrac{{n\left( {n + 1} \right)\left( {3n + 5} \right)\left( {n + 2} \right)}}{{48}}
\]
Hence, option (D) is correct
Note: Using the series formula, we calculated the sum of the given series. Students must be careful while calculating the sum of series as he/she could be mistakes while calculating the series and apply the formulas used in the above solution correctly to get the required result.
Formula Used:
1. \[{T_n} = a + \left( {n - 1} \right)d\]
where \[a\] is the first term, \[d\] is a common difference and \[{T_n}\] is \[{n_{th}}\] term of series
2. \[{S_n} = \sum {{T_n}} \]
where \[{S_n}\] is the sum of the series and \[{T_n}\] is the \[{n_{th}}\] of the series
3. \[\sum {{n^3} = } \dfrac{{n\left( {n + 1} \right)\left( {2n + 1} \right)}}{6}\]
4. \[\sum {{n^2} = } {\left( {\dfrac{{n\left( {n + 1} \right)}}{2}} \right)^2}\]
5. \[\sum {n = } \dfrac{{n\left( {n + 1} \right)}}{2}\]
Complete step-by-step solution:
Given that \[\dfrac{{{1^3}}}{1}{\text{ }} + {\text{ }}\dfrac{{\left( {{1^3} + {2^3}} \right)}}{2}{\text{ }} + {\text{ }}\dfrac{{\left( {{1^3} + {2^3} + {3^3}} \right)}}{3}{\text{ }} + ...upto{\text{ }}n{\text{ }}terms{\text{ }}\]
Now solve the \[{n_{th}}\] term of the numerator and the denominator separately:
Now the numerator series is \[{1^3} + {2^3} + {3^3}... + {n^3}\]
Now, the \[{n_{th}}\] term of the series by formula \[{T_n} = a + \left( {n - 1} \right)d\] is
\[
{T_n} = {1^3} + {2^3} + ..... + { n^3} \\
= \sum {{n^3}}
\]
We know that sum of cubes of n natural number is \[{\left( {\dfrac{{n\left( {n + 1} \right)}}{2}} \right)^2}\]
Therefore,
\[
{T_n} = {\left( {\dfrac{{n\left( {n + 1} \right)}}{2}} \right)^2} \\
= \dfrac{{{{\left[ {n\left( {n + 1} \right)} \right]}^2}}}{{{2^2}}} \\
= \dfrac{{{{\left[ {n\left( {n + 1} \right)} \right]}^2}}}{4}...\left( 1 \right)
\]
Now the denominator series is \[1,2,3,...n\]
Now, the \[{n_{th}}\] term of the series by formula \[{T_n} = a + \left( {n - 1} \right)d\] is
\[
{T_n} = a + \left( {n - 1} \right)d \\
= 1 + \left( {n - 1} \right)1 \\
= 1 + n - 1 \\
= n...\left( 2 \right)
\]
Therefore, the \[{n_{th}}\] of the series \[\dfrac{{{1^3}}}{1}{\text{ }} + {\text{ }}\dfrac{{\left( {{1^3} + {2^3}} \right)}}{2}{\text{ }} + {\text{ }}\dfrac{{\left( {{1^3} + {2^3} + {3^3}} \right)}}{3}{\text{ }} + ...upto{\text{ }}n{\text{ }}terms{\text{ }}\] from equation (1) and (2) is
\[
{T_n} = \dfrac{{\dfrac{{{{\left[ {n\left( {n + 1} \right)} \right]}^2}}}{4}}}{n} \\
= \dfrac{{{{\left[ {n\left( {n + 1} \right)} \right]}^2}}}{{4n}} \\
= \dfrac{{{n^2}{{\left( {n + 1} \right)}^2}}}{{4n}} \\
= \dfrac{{n{{\left( {n + 1} \right)}^2}}}{4}
\]
Now, the sum of series is given by \[{S_n} = \sum {{T_n}} \]
\[
{S_n} = \sum {\dfrac{{n{{\left( {n + 1} \right)}^2}}}{4}} \\
= \sum {\dfrac{{n\left( {{n^2} + 1 + 2n} \right)}}{4}} \\
= \sum {\dfrac{{{n^3} + n + 2{n^2}}}{4}} \\
= \dfrac{1}{4}\sum {{n^3} + n + 2{n^2}}
\]
Further solving,
\[{S_n} = \dfrac{1}{4}\left[ {\sum {{n^3} + \sum {2{n^2}} } + \sum n } \right]\]
We know that \[\sum {{n^3}} = \dfrac{{n\left( {n + 1} \right)\left( {2n + 1} \right)}}{6}\], \[\sum {{n^2}} = {\left( {\dfrac{{n\left( {n + 1} \right)}}{2}} \right)^2}\]and \[\sum n = \dfrac{{n\left( {n + 1} \right)}}{2}\]
Now by applying these formulas, we get
\[
{S_n} = \dfrac{1}{4}\left[ {{{\left( {\dfrac{{n\left( {n + 1} \right)}}{2}} \right)}^2} + 2\left( {\dfrac{{n\left( {n + 1} \right)\left( {2n + 1} \right)}}{6}} \right) + \dfrac{{n\left( {n + 1} \right)}}{2}} \right] \\
= \dfrac{1}{4}\left[ {\dfrac{{{n^2}{{\left( {n + 1} \right)}^2}}}{{{2^2}}} + \dfrac{{n\left( {n + 1} \right)\left( {2n + 1} \right)}}{3} + \dfrac{{n\left( {n + 1} \right)}}{2}} \right] \\
= \dfrac{1}{4}\left[ {n\left( {n + 1} \right)\left[ {\dfrac{{n\left( {n + 1} \right)}}{4} + \dfrac{{2n + 1}}{3} + \dfrac{1}{2}} \right]} \right] \\
= \dfrac{{n\left( {n + 1} \right)}}{4}\left[ {\dfrac{{3\left( {n\left( {n + 1} \right)} \right) + 4\left( {2n + 1} \right) + 6}}{{12}}} \right]
\]
Further solving,
\[
{S_n} = \dfrac{{n\left( {n + 1} \right)}}{4}\left[ {\dfrac{{3\left( {{n^2} + n} \right) + 8n + 4 + 6}}{{12}}} \right] \\
= \dfrac{{n\left( {n + 1} \right)}}{4}\left[ {\dfrac{{3{n^2} + 3n + 8n + 10}}{{12}}} \right] \\
= \dfrac{{n\left( {n + 1} \right)}}{4}\left[ {\dfrac{{3{n^2} + 11n + 10}}{{12}}} \right] \\
= \dfrac{{n\left( {n + 1} \right)}}{4}\left[ {\dfrac{{3{n^2} + 6n + 5n + 10}}{{12}}} \right]
\]
Furthermore solving,
\[
{S_n} = \dfrac{{n\left( {n + 1} \right)}}{4}\left[ {\dfrac{{3n\left( {n + 2} \right) + 5\left( {n + 2} \right)}}{{12}}} \right] \\
= \dfrac{{n\left( {n + 1} \right)}}{4}\left[ {\dfrac{{\left( {3n + 5} \right)\left( {n + 2} \right)}}{{12}}} \right] \\
= \dfrac{{n\left( {n + 1} \right)\left( {3n + 5} \right)\left( {n + 2} \right)}}{{4 \times 12}} \\
= \dfrac{{n\left( {n + 1} \right)\left( {3n + 5} \right)\left( {n + 2} \right)}}{{48}}
\]
Hence, option (D) is correct
Note: Using the series formula, we calculated the sum of the given series. Students must be careful while calculating the sum of series as he/she could be mistakes while calculating the series and apply the formulas used in the above solution correctly to get the required result.
Recently Updated Pages
JEE Atomic Structure and Chemical Bonding important Concepts and Tips

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

Electricity and Magnetism Explained: Key Concepts & Applications

Chemical Properties of Hydrogen - Important Concepts for JEE Exam Preparation

JEE Energetics Important Concepts and Tips for Exam Preparation

JEE Isolation, Preparation and Properties of Non-metals Important Concepts and Tips for Exam Preparation

Trending doubts
JEE Main 2026: Application Form Open, Exam Dates, Syllabus, Eligibility & Question Papers

Derivation of Equation of Trajectory Explained for Students

Hybridisation in Chemistry – Concept, Types & Applications

Understanding the Angle of Deviation in a Prism

Understanding Collisions: Types and Examples for Students

How to Convert a Galvanometer into an Ammeter or Voltmeter

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

NCERT Solutions for Class 11 Maths Chapter 10 Conic Sections

NCERT Solutions for Class 11 Maths Chapter 9 Straight Lines

NCERT Solutions For Class 11 Maths Chapter 8 Sequences And Series

Ideal and Non-Ideal Solutions Explained for Class 12 Chemistry

Degree of Dissociation: Meaning, Formula, Calculation & Uses

