
Find the solution of \[\left( {x + y + 1} \right)\left( {\dfrac{{dy}}{{dx}}} \right) = 1\].
A. \[y{\rm{ }} = {\rm{ }}(x{\rm{ }} + {\rm{ }}2){\rm{ }} + {\rm{ }}c{e^x}\]
B. \[y{\rm{ }} = {\rm{ }} - {\rm{ }}(x{\rm{ }} + {\rm{ }}2){\rm{ }} + {\rm{ }}c{e^x}\]
C. \[x{\rm{ }} = {\rm{ }} - {\rm{ }}(y{\rm{ }} + {\rm{ }}2){\rm{ }} + {\rm{ }}c{e^y}\]
D. \[x{\rm{ }} = {\rm{ }}{(y{\rm{ }} + {\rm{ }}2)^2} + {\rm{ }}c{e^y}\]
Answer
232.8k+ views
Hint: substitute the given expression as \[x{\rm{ }} + {\rm{ }}y{\rm{ }} + 1 = {\rm{ }}u\] and then, \[du{\rm{ }} = {\rm{ }}dx{\rm{ }} + {\rm{ }}dy\]. Then, after putting the values, integrate both the sides and solve the integral further.
Formula used:
1. \[\int {\dfrac{1}{x}dx} = \log \left| x \right| + C\]
2. \[\int {dx} = x + C\]
Complete step by step solution:
We have the given equation is: \[\left( {x + y + 1} \right)\left( {\dfrac{{dy}}{{dx}}} \right) = 1\]
Now,
\[\left( {x{\rm{ }} + {\rm{ }}y{\rm{ }} + {\rm{ }}1} \right){\rm{ }}dy{\rm{ }} = {\rm{ }}dx\] ………………………..(1)
We will assume it as equation (1).
Substituting \[x{\rm{ }} + {\rm{ }}y{\rm{ }} + 1 = {\rm{ }}u\], we have \[du{\rm{ }} = {\rm{ }}dx{\rm{ }} + {\rm{ }}dy\] and now the given equation reduces to
\[u\left( {du - dx} \right){\rm{ }} = {\rm{ }}dx\;\]
\[ \Rightarrow \dfrac{{{\rm{udu}}}}{{{\rm{u + 1}}}}\] = \[dx\]
\[ \Rightarrow \dfrac{{{\rm{(u+1-1)du}}}}{{{\rm{u + 1}}}}\] = \[dx\]
Now, on integrating on both the sides, we get:
\[ \Rightarrow \int {\left( {{\rm{1 - }}\dfrac{{\rm{1}}}{{{\rm{u + 1}}}}} \right)} {\rm{du = }}\int {{\rm{dx}}} \]
\[ \Rightarrow {\rm{u - log(u + 1) = x + k}}\]
Putting the value of \[x{\rm{ }} + {\rm{ }}y{\rm{ }} + 1 = {\rm{ }}u\], we get:
\[ \Rightarrow {\rm{log(x + y + 2) = y + C}}\]
Taking antilog on both sides, we have:
\[ \Rightarrow {\rm{x + y + 2 = C}}{{\rm{e}}^y}\]
The correct answer is option C.
Note-A differential equation is one that has a function and its derivatives. It can be referred to as either an ordinary differential equation (ODE) or a partial differential equation, depending on whether partial derivatives are present or not (PDE).
Formula used:
1. \[\int {\dfrac{1}{x}dx} = \log \left| x \right| + C\]
2. \[\int {dx} = x + C\]
Complete step by step solution:
We have the given equation is: \[\left( {x + y + 1} \right)\left( {\dfrac{{dy}}{{dx}}} \right) = 1\]
Now,
\[\left( {x{\rm{ }} + {\rm{ }}y{\rm{ }} + {\rm{ }}1} \right){\rm{ }}dy{\rm{ }} = {\rm{ }}dx\] ………………………..(1)
We will assume it as equation (1).
Substituting \[x{\rm{ }} + {\rm{ }}y{\rm{ }} + 1 = {\rm{ }}u\], we have \[du{\rm{ }} = {\rm{ }}dx{\rm{ }} + {\rm{ }}dy\] and now the given equation reduces to
\[u\left( {du - dx} \right){\rm{ }} = {\rm{ }}dx\;\]
\[ \Rightarrow \dfrac{{{\rm{udu}}}}{{{\rm{u + 1}}}}\] = \[dx\]
\[ \Rightarrow \dfrac{{{\rm{(u+1-1)du}}}}{{{\rm{u + 1}}}}\] = \[dx\]
Now, on integrating on both the sides, we get:
\[ \Rightarrow \int {\left( {{\rm{1 - }}\dfrac{{\rm{1}}}{{{\rm{u + 1}}}}} \right)} {\rm{du = }}\int {{\rm{dx}}} \]
\[ \Rightarrow {\rm{u - log(u + 1) = x + k}}\]
Putting the value of \[x{\rm{ }} + {\rm{ }}y{\rm{ }} + 1 = {\rm{ }}u\], we get:
\[ \Rightarrow {\rm{log(x + y + 2) = y + C}}\]
Taking antilog on both sides, we have:
\[ \Rightarrow {\rm{x + y + 2 = C}}{{\rm{e}}^y}\]
The correct answer is option C.
Note-A differential equation is one that has a function and its derivatives. It can be referred to as either an ordinary differential equation (ODE) or a partial differential equation, depending on whether partial derivatives are present or not (PDE).
Recently Updated Pages
Geometry of Complex Numbers Explained

JEE General Topics in Chemistry Important Concepts and Tips

JEE Extractive Metallurgy Important Concepts and Tips for Exam Preparation

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

JEE Atomic Structure and Chemical Bonding important Concepts and Tips

Electricity and Magnetism Explained: Key Concepts & Applications

Trending doubts
JEE Main 2026: Session 2 Registration Open, City Intimation Slip, Exam Dates, Syllabus & Eligibility

JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

JEE Main Marking Scheme 2026- Paper-Wise Marks Distribution and Negative Marking Details

Understanding the Angle of Deviation in a Prism

Hybridisation in Chemistry – Concept, Types & Applications

How to Convert a Galvanometer into an Ammeter or Voltmeter

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Understanding the Electric Field of a Uniformly Charged Ring

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

Derivation of Equation of Trajectory Explained for Students

Understanding Electromagnetic Waves and Their Importance

Understanding How a Current Loop Acts as a Magnetic Dipole

