
Find the solution of \[\left( {x + y + 1} \right)\left( {\dfrac{{dy}}{{dx}}} \right) = 1\].
A. \[y{\rm{ }} = {\rm{ }}(x{\rm{ }} + {\rm{ }}2){\rm{ }} + {\rm{ }}c{e^x}\]
B. \[y{\rm{ }} = {\rm{ }} - {\rm{ }}(x{\rm{ }} + {\rm{ }}2){\rm{ }} + {\rm{ }}c{e^x}\]
C. \[x{\rm{ }} = {\rm{ }} - {\rm{ }}(y{\rm{ }} + {\rm{ }}2){\rm{ }} + {\rm{ }}c{e^y}\]
D. \[x{\rm{ }} = {\rm{ }}{(y{\rm{ }} + {\rm{ }}2)^2} + {\rm{ }}c{e^y}\]
Answer
216.3k+ views
Hint: substitute the given expression as \[x{\rm{ }} + {\rm{ }}y{\rm{ }} + 1 = {\rm{ }}u\] and then, \[du{\rm{ }} = {\rm{ }}dx{\rm{ }} + {\rm{ }}dy\]. Then, after putting the values, integrate both the sides and solve the integral further.
Formula used:
1. \[\int {\dfrac{1}{x}dx} = \log \left| x \right| + C\]
2. \[\int {dx} = x + C\]
Complete step by step solution:
We have the given equation is: \[\left( {x + y + 1} \right)\left( {\dfrac{{dy}}{{dx}}} \right) = 1\]
Now,
\[\left( {x{\rm{ }} + {\rm{ }}y{\rm{ }} + {\rm{ }}1} \right){\rm{ }}dy{\rm{ }} = {\rm{ }}dx\] ………………………..(1)
We will assume it as equation (1).
Substituting \[x{\rm{ }} + {\rm{ }}y{\rm{ }} + 1 = {\rm{ }}u\], we have \[du{\rm{ }} = {\rm{ }}dx{\rm{ }} + {\rm{ }}dy\] and now the given equation reduces to
\[u\left( {du - dx} \right){\rm{ }} = {\rm{ }}dx\;\]
\[ \Rightarrow \dfrac{{{\rm{udu}}}}{{{\rm{u + 1}}}}\] = \[dx\]
\[ \Rightarrow \dfrac{{{\rm{(u+1-1)du}}}}{{{\rm{u + 1}}}}\] = \[dx\]
Now, on integrating on both the sides, we get:
\[ \Rightarrow \int {\left( {{\rm{1 - }}\dfrac{{\rm{1}}}{{{\rm{u + 1}}}}} \right)} {\rm{du = }}\int {{\rm{dx}}} \]
\[ \Rightarrow {\rm{u - log(u + 1) = x + k}}\]
Putting the value of \[x{\rm{ }} + {\rm{ }}y{\rm{ }} + 1 = {\rm{ }}u\], we get:
\[ \Rightarrow {\rm{log(x + y + 2) = y + C}}\]
Taking antilog on both sides, we have:
\[ \Rightarrow {\rm{x + y + 2 = C}}{{\rm{e}}^y}\]
The correct answer is option C.
Note-A differential equation is one that has a function and its derivatives. It can be referred to as either an ordinary differential equation (ODE) or a partial differential equation, depending on whether partial derivatives are present or not (PDE).
Formula used:
1. \[\int {\dfrac{1}{x}dx} = \log \left| x \right| + C\]
2. \[\int {dx} = x + C\]
Complete step by step solution:
We have the given equation is: \[\left( {x + y + 1} \right)\left( {\dfrac{{dy}}{{dx}}} \right) = 1\]
Now,
\[\left( {x{\rm{ }} + {\rm{ }}y{\rm{ }} + {\rm{ }}1} \right){\rm{ }}dy{\rm{ }} = {\rm{ }}dx\] ………………………..(1)
We will assume it as equation (1).
Substituting \[x{\rm{ }} + {\rm{ }}y{\rm{ }} + 1 = {\rm{ }}u\], we have \[du{\rm{ }} = {\rm{ }}dx{\rm{ }} + {\rm{ }}dy\] and now the given equation reduces to
\[u\left( {du - dx} \right){\rm{ }} = {\rm{ }}dx\;\]
\[ \Rightarrow \dfrac{{{\rm{udu}}}}{{{\rm{u + 1}}}}\] = \[dx\]
\[ \Rightarrow \dfrac{{{\rm{(u+1-1)du}}}}{{{\rm{u + 1}}}}\] = \[dx\]
Now, on integrating on both the sides, we get:
\[ \Rightarrow \int {\left( {{\rm{1 - }}\dfrac{{\rm{1}}}{{{\rm{u + 1}}}}} \right)} {\rm{du = }}\int {{\rm{dx}}} \]
\[ \Rightarrow {\rm{u - log(u + 1) = x + k}}\]
Putting the value of \[x{\rm{ }} + {\rm{ }}y{\rm{ }} + 1 = {\rm{ }}u\], we get:
\[ \Rightarrow {\rm{log(x + y + 2) = y + C}}\]
Taking antilog on both sides, we have:
\[ \Rightarrow {\rm{x + y + 2 = C}}{{\rm{e}}^y}\]
The correct answer is option C.
Note-A differential equation is one that has a function and its derivatives. It can be referred to as either an ordinary differential equation (ODE) or a partial differential equation, depending on whether partial derivatives are present or not (PDE).
Recently Updated Pages
JEE Atomic Structure and Chemical Bonding important Concepts and Tips

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

Electricity and Magnetism Explained: Key Concepts & Applications

Chemical Properties of Hydrogen - Important Concepts for JEE Exam Preparation

JEE Energetics Important Concepts and Tips for Exam Preparation

JEE Isolation, Preparation and Properties of Non-metals Important Concepts and Tips for Exam Preparation

Trending doubts
JEE Main 2026: Application Form Open, Exam Dates, Syllabus, Eligibility & Question Papers

Derivation of Equation of Trajectory Explained for Students

Hybridisation in Chemistry – Concept, Types & Applications

Understanding the Angle of Deviation in a Prism

Understanding Collisions: Types and Examples for Students

How to Convert a Galvanometer into an Ammeter or Voltmeter

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Ideal and Non-Ideal Solutions Explained for Class 12 Chemistry

Degree of Dissociation: Meaning, Formula, Calculation & Uses

Understanding Electromagnetic Waves and Their Importance

Understanding the Electric Field of a Uniformly Charged Ring

Understanding Average and RMS Value in Electrical Circuits

